Two-step interpretable modeling of ICU-AIs

被引:0
作者
Lancia, G. [1 ]
Varkila, M. R. J. [2 ]
Cremer, O. L. [2 ]
Spitoni, C. [1 ]
机构
[1] Univ Utrecht, Math Dept, Budapestlaan 6, NL-3584 CD Utrecht, Netherlands
[2] Julius Ctr Hlth Sci & Med Ctr, NL-3584 CG Utrecht, Netherlands
关键词
Landmarking approach; Convolutional neural networks; Dynamic prediction; ICU acquired infections; Saliency maps; TRANSITION-PROBABILITIES; DYNAMIC PREDICTION; ANOMALY DETECTION; COMPETING RISKS; NEURAL-NETWORKS; LANDMARKING; INFECTION;
D O I
10.1016/j.artmed.2024.102862
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel methodology for integrating high resolution longitudinal data with the dynamic prediction capabilities of survival models. The aim is two -fold: to improve the predictive power while maintaining the interpretability of the models. To go beyond the black box paradigm of artificial neural networks, we propose a parsimonious and robust semi -parametric approach (i.e., a landmarking competing risks model) that combines routinely collected low -resolution data with predictive features extracted from a convolutional neural network, that was trained on high resolution time -dependent information. We then use saliency maps to analyze and explain the extra predictive power of this model. To illustrate our methodology, we focus on healthcare -associated infections in patients admitted to an intensive care unit.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] A two-step real-time PCR assay for quantitation and genotyping of human parvovirus 4
    Vaisanen, E.
    Lahtinen, A.
    Eis-Huebinger, A. M.
    Lappalainen, M.
    Hedman, K.
    Soderlund-Venermo, M.
    JOURNAL OF VIROLOGICAL METHODS, 2014, 195 : 106 - 111
  • [32] Production and Purification of Two Bioactive Antimicrobial Peptides Using a Two-Step Approach Involving an Elastin-Like Fusion Tag
    Pereira, Ana Margarida
    da Costa, Andre
    Dias, Simoni Campos
    Casal, Margarida
    Machado, Raul
    PHARMACEUTICALS, 2021, 14 (10)
  • [33] Two-step registration of near-space remote sensing images via deep neural networks
    Li, Xiaohan
    An, Meng
    Zhang, Haopeng
    Xie, Fengying
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXVIII, 2022, 12267
  • [34] Two-Step Scheme for Rapid Identification and Differentiation of Legionella pneumophila and Non-Legionella pneumophila Species
    Zhan, Xiao-Yong
    Li, Lian-Qing
    Hu, Chao-Hui
    Zhu, Qing-Yi
    JOURNAL OF CLINICAL MICROBIOLOGY, 2010, 48 (02) : 433 - 439
  • [35] Two-step deep-learning identification of heel keypoints from video-recorded gait
    Halvorsen, Kjartan
    Peng, Wei
    Olsson, Fredrik
    Aberg, Anna Cristina
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2025, 63 (01) : 229 - 237
  • [36] Disclosure and Stigma of a Positive HIV-Serostatus: A Two-Step Cluster Analysis of the HIV Disclosure Scale
    Guy, Arryn A.
    Niel, Kristin
    Duran, R. E. Franco
    AIDS AND BEHAVIOR, 2018, 22 (05) : 1606 - 1613
  • [37] Lightweight model-based two-step fine-tuning for fault diagnosis with limited data
    Tang, Tang
    Wu, Jie
    Chen, Ming
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (12)
  • [38] Modelling infection as a two-step process combining gene-for-gene and matching-allele genetics
    Agrawal, AF
    Lively, CM
    PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2003, 270 (1512) : 323 - 334
  • [39] Serum-Mediated Cleavage of Bacillus anthracis Protective Antigen Is a Two-Step Process That Involves a Serum Carboxypeptidase
    Goldman, David L.
    Nieves, Edward
    Nakouzi, Antonio
    Rivera, Johanna
    Phyu, Ei Ei
    Win, Than Htut
    Achkar, Jacqueline M.
    Casadevall, Arturo
    MSPHERE, 2018, 3 (03):
  • [40] Two-step residual-error based approach for anomaly detection in engineering systems using variational autoencoders
    Gonzalez-Muniz, Ana
    Diaz, Ignacio
    Cuadrado, Abel A.
    Garcia-Perez, Diego
    Perez, Daniel
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 101