Two-step interpretable modeling of ICU-AIs

被引:0
|
作者
Lancia, G. [1 ]
Varkila, M. R. J. [2 ]
Cremer, O. L. [2 ]
Spitoni, C. [1 ]
机构
[1] Univ Utrecht, Math Dept, Budapestlaan 6, NL-3584 CD Utrecht, Netherlands
[2] Julius Ctr Hlth Sci & Med Ctr, NL-3584 CG Utrecht, Netherlands
关键词
Landmarking approach; Convolutional neural networks; Dynamic prediction; ICU acquired infections; Saliency maps; TRANSITION-PROBABILITIES; DYNAMIC PREDICTION; ANOMALY DETECTION; COMPETING RISKS; NEURAL-NETWORKS; LANDMARKING; INFECTION;
D O I
10.1016/j.artmed.2024.102862
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel methodology for integrating high resolution longitudinal data with the dynamic prediction capabilities of survival models. The aim is two -fold: to improve the predictive power while maintaining the interpretability of the models. To go beyond the black box paradigm of artificial neural networks, we propose a parsimonious and robust semi -parametric approach (i.e., a landmarking competing risks model) that combines routinely collected low -resolution data with predictive features extracted from a convolutional neural network, that was trained on high resolution time -dependent information. We then use saliency maps to analyze and explain the extra predictive power of this model. To illustrate our methodology, we focus on healthcare -associated infections in patients admitted to an intensive care unit.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Effect of two-step hygiene management on the prevention of nosocomial influenza in a season with high influenza activity
    Ambrosch, A.
    Rockmann, F.
    JOURNAL OF HOSPITAL INFECTION, 2016, 94 (02) : 143 - 149
  • [22] Fusaoctaxin A, an Example of a Two-Step Mechanism for Non-Ribosomal Peptide Assembly and Maturation in Fungi
    Westphal, Klaus Ringsborg
    Nielsen, Katrine Amalie Hamborg
    Wollenberg, Rasmus Dam
    Mollehoj, Mathias Bonde
    Bachleitner, Simone
    Studt, Lena
    Lysoe, Erik
    Giese, Henriette
    Wimmer, Reinhard
    Sorensen, Jens Laurids
    Sondergaard, Teis Esben
    TOXINS, 2019, 11 (05)
  • [23] Machine-Learning-enhanced systemic risk measure: A Two-Step supervised learning approach
    Liu, Ruicheng
    Pun, Chi Seng
    JOURNAL OF BANKING & FINANCE, 2022, 136
  • [24] Time Series Anomaly Detection Using Transformer-Based GAN With Two-Step Masking
    Shin, Ah-Hyung
    Kim, Seong Tae
    Park, Gyeong-Moon
    IEEE ACCESS, 2023, 11 : 74035 - 74047
  • [25] Optimizing the interpretation of Clostridioides difficile two-step diagnostic algorithm results through antimicrobial stewardship
    Lowe, Christopher F.
    Shakeraneh, Shayan
    Lee, Colin
    Sharma, Azra
    Leung, Victor
    ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY, 2022, 2 (01):
  • [26] A two-step hydrothermal method for micro/nanotextured titanium implants and their integration outcomes in goat mandible
    Mistry, Surajit
    Bhowmick, Debarati
    Nayek, Moumita
    Das, Indrasri
    Mistry, Shuvojit
    Maitra, Nilendu Jyoti
    Rudra, Argha
    NANOMEDICINE, 2025, 20 (01) : 53 - 62
  • [27] Two-step optimization for accelerating deep image prior-based PET image reconstruction
    Hashimoto, Fumio
    Onishi, Yuya
    Ote, Kibo
    Tashima, Hideaki
    Yamaya, Taiga
    RADIOLOGICAL PHYSICS AND TECHNOLOGY, 2024, 17 (03) : 776 - 781
  • [28] A simple two-step purification procedure for the iC3b binding collectin conglutinin
    Krogh-Meibom, Thomas
    Ingvartsen, Klaus Lonne
    Tornoe, Ida
    Palaniyar, Nades
    Willis, Anthony C.
    Holmskov, Uffe
    JOURNAL OF IMMUNOLOGICAL METHODS, 2010, 362 (1-2) : 204 - 208
  • [29] A two-step machine learning approach for predictive maintenance and anomaly detection in environmental sensor systems
    Potharaju, Saiprasad
    Tirandasub, Ravi Kumar
    Tambec, Swapnali N.
    Jadhav, Devyani Bhamare
    Kumar, Dudla Anil
    Amiripalli, Shanmuk Srinivas
    METHODSX, 2025, 14
  • [30] Two-Step Registration on Multi-Modal Retinal Images via Deep Neural Networks
    Zhang, Junkang
    Wang, Yiqian
    Dai, Ji
    Cavichini, Melina
    Bartsch, Dirk-Uwe G.
    Freeman, William R.
    Nguyen, Truong Q.
    An, Cheolhong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 823 - 838