Sobolev improvements on sharp Rellich inequalities

被引:0
作者
Barbatis, Gerassimos [1 ]
Tertikas, Achilles [2 ,3 ]
机构
[1] Natl & Kapodistrian Univ Athens, Dept Math, Athens 15784, Greece
[2] Univ Crete, Dept Math & Appl Math, Iraklion 70013, Greece
[3] Fdn Res & Technol, Inst Appl & Computat Math, 100 Nikolaou Plastira Str, Iraklion 71110, Greece
关键词
Rellich inequality; Sobolev inequality; best constant; CONSTANTS;
D O I
10.4171/JST/508
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There are two Rellich inequalities for the bilaplacian, that is, for integral(Delta u)(2)dx, the one involving vertical bar del u vertical bar and the other involving vertical bar u vertical bar at the RHS. In this article, we consider these inequalities with sharp constants and obtain sharp Sobolev-type improvements. More precisely, in our first result, we improve the Rellich inequality with vertical bar del u vertical bar obtained by Beckner in dimensions n = 3, 4 by a sharp Sobolev term, thus complementing existing results for the case n >= 5 . In the second theorem, the sharp constant of the Sobolev improvement for the Rellich inequality with vertical bar u vertical bar is obtained.
引用
收藏
页码:641 / 663
页数:23
相关论文
共 50 条
[41]   Weighted Hardy and Rellich type inequalities on Riemannian manifolds [J].
Kombe, Ismail ;
Yener, Abdullah .
MATHEMATISCHE NACHRICHTEN, 2016, 289 (8-9) :994-1004
[42]   ONE-DIMENSIONAL INTEGRAL RELLICH TYPE INEQUALITIES [J].
Ozawa, T. ;
Roychowdhury, P. ;
Suragan, D. .
EURASIAN MATHEMATICAL JOURNAL, 2025, 16 (01) :86-93
[43]   Some weighted Hardy and Rellich inequalities on the Heisenberg group [J].
Xi, Lin ;
Dou, Jingbo .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2021, 32 (03)
[44]   The sharp higher-order Lorentz-Poincare and Lorentz-Sobolev inequalities in the hyperbolic spaces [J].
Nguyen, Van Hoang .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (05) :2133-2153
[45]   Almost sharp weighted Sobolev trace inequalities in the unit ball under constraints [J].
An, Jiaxing ;
Dou, Jingbo ;
Han, Yazhou .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2024, 26 (06)
[46]   Sharp Singular Trudinger-Moser Inequalities in Lorentz-Sobolev Spaces [J].
Lu, Guozhen ;
Tang, Hanli .
ADVANCED NONLINEAR STUDIES, 2016, 16 (03) :581-601
[47]   On the compactness problem of extremal functions to sharp Riemannian LP-Sobolev inequalities [J].
Barbosa, Ezequiel R. ;
Montenegro, Marcos .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (04) :965-988
[48]   Sharp Trace Hardy–Sobolev-Maz’ya Inequalities and the Fractional Laplacian [J].
Stathis Filippas ;
Luisa Moschini ;
Achilles Tertikas .
Archive for Rational Mechanics and Analysis, 2013, 208 :109-161
[49]   Analytical approach of the symmetry: Sharp supercritical Hardy-Sobolev inequalities and applications [J].
Cotsiolis, Athanase ;
Labropoulos, Nikos .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 171 :134-155
[50]   A Hierarchical Structure for the Sharp Constants of Discrete Sobolev Inequalities on a Weighted Complete Graph [J].
Takemura, Kazuo ;
Kametaka, Yoshinori ;
Nagai, Atsushi .
SYMMETRY-BASEL, 2018, 10 (01)