Sobolev improvements on sharp Rellich inequalities

被引:0
作者
Barbatis, Gerassimos [1 ]
Tertikas, Achilles [2 ,3 ]
机构
[1] Natl & Kapodistrian Univ Athens, Dept Math, Athens 15784, Greece
[2] Univ Crete, Dept Math & Appl Math, Iraklion 70013, Greece
[3] Fdn Res & Technol, Inst Appl & Computat Math, 100 Nikolaou Plastira Str, Iraklion 71110, Greece
关键词
Rellich inequality; Sobolev inequality; best constant; CONSTANTS;
D O I
10.4171/JST/508
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There are two Rellich inequalities for the bilaplacian, that is, for integral(Delta u)(2)dx, the one involving vertical bar del u vertical bar and the other involving vertical bar u vertical bar at the RHS. In this article, we consider these inequalities with sharp constants and obtain sharp Sobolev-type improvements. More precisely, in our first result, we improve the Rellich inequality with vertical bar del u vertical bar obtained by Beckner in dimensions n = 3, 4 by a sharp Sobolev term, thus complementing existing results for the case n >= 5 . In the second theorem, the sharp constant of the Sobolev improvement for the Rellich inequality with vertical bar u vertical bar is obtained.
引用
收藏
页码:641 / 663
页数:23
相关论文
共 50 条
[31]   SHARP CAFFARELLI-KOHN-NIRENBERG AND HARDY-RELLICH INEQUALITIES FOR PARTIALLY ANTISYMMETRIC FUNCTIONS [J].
Jin, Yongyang ;
Tang, Li ;
Fan, Yi ;
Yu, Nianxing .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (01) :193-205
[32]   IMPROVED HARDY AND RELLICH INEQUALITIES ON RIEMANNIAN MANIFOLDS [J].
Kombe, Ismail ;
Oezaydin, Murad .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (12) :6191-6203
[33]   Rellich inequalities in bounded domains [J].
Metafune, G. ;
Negro, L. ;
Sobajima, M. ;
Spina, C. .
MATHEMATISCHE ANNALEN, 2021, 379 (1-2) :765-824
[34]   Sharp Hardy-Littlewood-Sobolev inequalities on the octonionic Heisenberg group [J].
Christ, Michael ;
Liu, Heping ;
Zhang, An .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (01) :1-18
[35]   Sharp Hardy-Littlewood-Sobolev inequalities on quaternionic Heisenberg groups [J].
Christ, Michael ;
Liu, Heping ;
Zhang, An .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 130 :361-395
[36]   The sharp Poincare-Sobolev type inequalities in the hyperbolic spaces Hn [J].
Van Hoang Nguyen .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 462 (02) :1570-1584
[37]   Sharp Hardy-Sobolev Inequalities with General Weights and Remainder Terms [J].
Shen, Yaotian ;
Chen, Zhihui .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2009,
[38]   A New Approach to Weighted Hardy-Rellich Inequalities: Improvements, Symmetrization Principle and Symmetry Breaking [J].
Do, Anh Xuan ;
Lam, Nguyen ;
Lu, Guozhen .
JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (12)
[39]   Weighted Hardy and Rellich type inequalities on Riemannian manifolds [J].
Kombe, Ismail ;
Yener, Abdullah .
MATHEMATISCHE NACHRICHTEN, 2016, 289 (8-9) :994-1004
[40]   Some weighted Hardy and Rellich inequalities on the Heisenberg group [J].
Xi, Lin ;
Dou, Jingbo .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2021, 32 (03)