Schur-Weyl duality for toroidal algebras of type A

被引:0
|
作者
Chari, Vyjayanthi [1 ]
Grimley, Lauren [2 ]
Lin, Zongzhu [3 ]
Mangum, Chad R. [4 ]
Uhl, Christine [5 ]
Wilson, Evan [6 ]
机构
[1] Univ Calif Riverside, Riverside, CA USA
[2] Univ Oklahoma, Norman, OK USA
[3] Kansas State Univ, Manhattan, KS USA
[4] Clemson Univ, Clemson 29631, SC USA
[5] St Bonaventure Univ, St Bonaventure, NY USA
[6] Brightpoint Community Coll, Hist, Chester, VA USA
关键词
Multiloop Lie algebras; Schur-Weyl duality; toroidal Lie algebras; LIE-ALGEBRAS; REPRESENTATIONS; AFFINE;
D O I
10.1080/00927872.2024.2357732
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We state and prove an analog of the Schur-Weyl duality for a quotient of the classical 2-toroidal Lie algebra of type A. We then provide a method to extend this duality to the m-toroidal case, m > 2.
引用
收藏
页码:4749 / 4766
页数:18
相关论文
共 50 条
  • [21] Schur-Weyl duality over commutative rings
    Cruz, Tiago
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (04) : 1619 - 1628
  • [22] SCHUR-WEYL DUALITY AND THE FREE LIE ALGEBRA
    Doty, Stephen
    Douglass, J. Matthew
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (08) : 3263 - 3277
  • [23] Schur-Weyl duality over finite fields
    Benson, David
    Doty, Stephen
    ARCHIV DER MATHEMATIK, 2009, 93 (05) : 425 - 435
  • [24] A Schur-Weyl Duality Approach toWalking on Cubes
    Georgia Benkart
    Dongho Moon
    Annals of Combinatorics, 2016, 20 : 397 - 417
  • [25] Schur-Weyl dualities for the rook monoid: an approach via Schur algebras
    Andre, Carlos A. M.
    Martins, Ines Legatheaux
    SEMIGROUP FORUM, 2024, 109 (01) : 38 - 59
  • [26] Schur-Weyl duality as an instrument of gauge-string duality
    Ramgoolam, Sanjaye
    TEN YEARS OF ADS/CFT, 2008, 1031 : 255 - 265
  • [27] SCHUR-WEYL DUALITY, VERMA MODULES, AND ROW QUOTIENTS OF ARIKI-KOIKE ALGEBRAS
    Lacabanne, Abel
    Vaz, Pedro
    PACIFIC JOURNAL OF MATHEMATICS, 2021, 311 (01) : 113 - 133
  • [28] Standard multipartitions and a combinatorial affine Schur-Weyl duality
    Du, Jie
    Wan, Jinkui
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (11)
  • [29] Geometric Realization of Dynkin Quiver Type Quantum Affine Schur-Weyl Duality
    Fujita, Ryo
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (22) : 8353 - 8386
  • [30] A categorical approach to classical and quantum Schur-Weyl duality
    Davydov, Alexei
    Molev, Alexander
    GROUPS, ALGEBRAS AND APPLICATIONS, 2011, 537 : 143 - +