Efficient preparation of non-Abelian topological orders in the doubled Hilbert space

被引:2
作者
Liu, Shang [1 ]
机构
[1] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
Ground state - Quantum theory - Topology - Vector spaces;
D O I
10.1103/PhysRevB.109.245109
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Realizing non-Abelian topological orders and their anyon excitations is an esteemed objective. In this work, we propose a novel approach towards this goal: quantum simulating topological orders in the doubled Hilbert space-the space of density matrices. We show that ground states of all quantum double models (toric code being the simplest example) can be efficiently prepared in the doubled Hilbert space; only finite-depth local operations are needed. In contrast, this is not the case in the conventional Hilbert space: ground states of only some of these models are known to be efficiently preparable. Additionally, we find that nontrivial anyon braiding effects, both Abelian and non-Abelian, can be realized in the doubled Hilbert space, although the intrinsic nature of density matrices restricts possible excitations.
引用
收藏
页数:7
相关论文
共 29 条
[1]   Quantum Simulators: Architectures and Opportunities [J].
Altman, Ehud ;
Brown, Kenneth R. ;
Carleo, Giuseppe ;
Carr, Lincoln D. ;
Demler, Eugene ;
Chin, Cheng ;
DeMarco, Brian ;
Economou, Sophia E. ;
Eriksson, Mark A. ;
Fu, Kai-Mei C. ;
Greiner, Markus ;
Hazzard, Kaden R. A. ;
Hulet, Randall G. ;
Kollar, Alicia J. ;
Lev, Benjamin L. ;
Lukin, Mikhail D. ;
Ma, Ruichao ;
Mi, Xiao ;
Misra, Shashank ;
Monroe, Christopher ;
Murch, Kater ;
Nazario, Zaira ;
Ni, Kang-Kuen ;
Potter, Andrew C. ;
Roushan, Pedram ;
Saffman, Mark ;
Schleier-Smith, Monika ;
Siddiqi, Irfan ;
Simmonds, Raymond ;
Singh, Meenakshi ;
Spielman, I. B. ;
Temme, Kristan ;
Weiss, David S. ;
Vuckovic, Jelena ;
Vuletic, Vladan ;
Ye, Jun ;
Zwierlein, Martin .
PRX QUANTUM, 2021, 2 (01)
[2]   Non-Abelian braiding of graph vertices in a superconducting processor [J].
Andersen, T. I. ;
Lensky, Y. D. ;
Kechedzhi, K. ;
Drozdov, I. K. ;
Bengtsson, A. ;
Hong, S. ;
Morvan, A. ;
Mi, X. ;
Opremcak, A. ;
Acharya, R. ;
Allen, R. ;
Ansmann, M. ;
Arute, F. ;
Arya, K. ;
Asfaw, A. ;
Atalaya, J. ;
Babbush, R. ;
Bacon, D. ;
Bardin, J. C. ;
Bortoli, G. ;
Bourassa, A. ;
Bovaird, J. ;
Brill, L. ;
Broughton, M. ;
Buckley, B. B. ;
Buell, D. A. ;
Burger, T. ;
Burkett, B. ;
Bushnell, N. ;
Chen, Z. ;
Chiaro, B. ;
Chik, D. ;
Chou, C. ;
Cogan, J. ;
Collins, R. ;
Conner, P. ;
Courtney, W. ;
Crook, A. L. ;
Curtin, B. ;
Debroy, D. M. ;
Del Toro Barba, A. ;
Demura, S. ;
Dunsworth, A. ;
Eppens, D. ;
Erickson, C. ;
Faoro, L. ;
Farhi, E. ;
Fatemi, R. ;
Ferreira, V. S. ;
Burgos, L. F. .
NATURE, 2023, 618 (7964) :264-+
[3]   Duality as a feasible physical transformation for quantum simulation [J].
Ashkenazi, Shachar ;
Zohar, Erez .
PHYSICAL REVIEW A, 2022, 105 (02)
[4]  
Bao Y., arXiv
[5]   Persistent entanglement in arrays of interacting particles [J].
Briegel, HJ ;
Raussendorf, R .
PHYSICAL REVIEW LETTERS, 2001, 86 (05) :910-913
[6]  
Dai XD, 2023, Arxiv, DOI arXiv:2310.17612
[7]   Practical quantum advantage in quantum simulation [J].
Daley, Andrew J. ;
Bloch, Immanuel ;
Kokail, Christian ;
Flannigan, Stuart ;
Pearson, Natalie ;
Troyer, Matthias ;
Zoller, Peter .
NATURE, 2022, 607 (7920) :667-676
[8]  
Fan RH, 2024, Arxiv, DOI arXiv:2301.05689
[9]  
Foss-Feig M., 2023, arXiv
[10]  
Iqbal M., arXiv