A quasilinear chemotaxis-haptotaxis system: Existence and blow-up results

被引:1
作者
Rani, Poonam [1 ]
Tyagi, Jagmohan [1 ]
机构
[1] Indian Inst Technol Gandhinagar, Gandhinagar 382055, Gujarat, India
关键词
Chemotaxis; Haptotaxis; Parabolic systems; Global existence and boundedness; Blow-up phenomena; KELLER-SEGEL SYSTEM; FINITE-TIME BLOWUP; CANCER INVASION; BOUNDEDNESS; MODEL; STABILIZATION; AGGREGATION; SOLVABILITY; DIFFUSION; TISSUE;
D O I
10.1016/j.jde.2024.04.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the following chemotaxis-haptotaxis system: {u(t) = del center dot (D(u)del u) - chi del center dot (S(u)del v) - xi del center dot (u del w), x is an element of Omega, t > 0, v(t) = Delta v - v + u, x is an element of Omega, t > 0, w(t) = -vw, x is an element of Omega, t > 0, under homogeneous Neumann boundary conditions in a bounded domain Omega subset of R-n, n >= 3with smooth boundary. It is proved that for S(s)/D(s) <= A(s+ 1)(alpha) for alpha < 2/n and under suitable growth conditions on D, there exists a uniform-in-time bounded classical solution. Also, we prove that for radial domains, when the opposite inequality holds, the corresponding solutions blow-up in finite or infinite-time. We also provide the global-in-time existence and boundedness of solutions to the above system with small initial data when D(s) = 1, S(s) = s. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页码:180 / 217
页数:38
相关论文
共 65 条
  • [1] Alikakos Nicholas D., 1979, COMMUN PART DIFF EQ, V4, P827, DOI [10.1080/03605307908820113, DOI 10.1080/03605307908820113]
  • [2] [Anonymous], 1968, TRANSLATIONS MATH MO
  • [3] [Anonymous], 2002, Canadian Appl. Math. Quart.
  • [4] [Anonymous], 2004, Jahresber. Dtsch. Math.-Ver
  • [5] Keller-Segel Chemotaxis Models: A Review
    Arumugam, Gurusamy
    Tyagi, Jagmohan
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2021, 171 (01)
  • [6] Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues
    Bellomo, N.
    Bellouquid, A.
    Tao, Y.
    Winkler, M.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (09) : 1663 - 1763
  • [7] Critical mass in a quasilinear parabolic-elliptic Keller-Segel model
    Cao, Xinru
    Gao, Xiaotong
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 361 : 449 - 471
  • [8] Boundedness in a three-dimensional chemotaxis-haptotaxis model
    Cao, Xinru
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (01):
  • [9] GLOBAL BOUNDED SOLUTIONS OF THE HIGHER-DIMENSIONAL KELLER-SEGEL SYSTEM UNDER SMALLNESS CONDITIONS IN OPTIMAL SPACES
    Cao, Xinru
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (05) : 1891 - 1904
  • [10] Chaplain MAJ, 2006, NETW HETEROG MEDIA, V1, P399