Strategies to enhance the performance of luminescent solar concentrators using colloidal quantum dots

被引:0
作者
Nahar, Mst Tajmun [1 ]
Islam, Md Jahirul [1 ,2 ]
Kaysir, Md Rejvi [1 ,2 ]
Mahmud, M. A. Parvez [3 ]
机构
[1] Khulna Univ Engn & Technol, Dept Elect & Elect Engn, Room 302, Khulna 9203, Bangladesh
[2] KUET, Photon Res Grp, Khulna, Bangladesh
[3] Univ Technol Sydney, Fac Sci, Sch Math & Phys Sci, Sydney, Australia
关键词
Luminophores; luminescent solar concentrators; Monte-Carlo simulation; photoluminescence; quantum dots; MONTE-CARLO; EFFICIENCY; CUINS2; CELLS;
D O I
10.1080/09500340.2024.2365789
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A luminescent solar concentrator (LSC), an optically transparent slab with high refractive index, infused with emissive luminophores, absorbs, re-emits and concentrates solar energy to the edges of a waveguide. This work aims to develop an efficient Monte-Carlo Ray-tracking algorithm to track the photon's excursion in LSC. The efficiency largely depends upon the optical properties of both luminophores and the slab waveguides. Two frameworks contribute here: (i) luminophores' optimal optical properties and (ii) design of the waveguide. Three colloidal QD-based systems (AgInS2/ZnS, ClSeS/ZnS and CuInS2) are employed and the ClSeS/ZnS QD-based LSC demonstrates the highest efficiency of 12.5% at a concentration of 200 ppm. Interestingly, a multi-QD approach in a single LSC device yields 17.2% efficiency which is 27.3% improvement over single QDs. By adjusting the luminophore emission angle from 45 degrees to 90 degrees the efficiency enhances by 2%. Future applications of the work include ecofriendly, sustainable renewable energy sources with long-term stability.
引用
收藏
页码:943 / 954
页数:12
相关论文
共 27 条
[1]   Routes to Achieving High Quantum Yield Luminescence from Gas-Phase-Produced Silicon Nanocrystals [J].
Anthony, Rebecca J. ;
Rowe, David J. ;
Stein, Matthias ;
Yang, Jihua ;
Kortshagen, Uwe .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (21) :4042-4046
[2]   High-Performance CuInS2 Quantum Dot Laminated Glass Luminescent Solar Concentrators for Windows [J].
Bergren, Matthew R. ;
Makarov, Nikolay S. ;
Ramasamy, Karthik ;
Jackson, Aaron ;
Gughelmetti, Rob ;
McDaniel, Hunter .
ACS ENERGY LETTERS, 2018, 3 (03) :520-525
[3]   Luminescence solar concentrators: A technology update [J].
Castelletto, Stefania ;
Boretti, Alberto .
NANO ENERGY, 2023, 109
[4]   Heavy Metal Free Nanocrystals with Near Infrared Emission Applying in Luminescent Solar Concentrator [J].
Chen, Wei ;
Li, Jiagen ;
Liu, Peizhao ;
Liu, Haochen ;
Xia, Jiuxu ;
Li, Shang ;
Wang, Dan ;
Wu, Dan ;
Lu, Wei ;
Sun, Xiao Wei ;
Wang, Kai .
SOLAR RRL, 2017, 1 (06)
[5]   Synthesis of CdSe/ZnS and CdTe/ZnS Quantum Dots: Refined Digestive Ripening [J].
Cingarapu, Sreeram ;
Yang, Zhiqiang ;
Sorensen, Christopher M. ;
Klabunde, Kenneth J. .
JOURNAL OF NANOMATERIALS, 2012, 2012
[6]   Zn-Cu-In-Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6% [J].
Du, Jun ;
Du, Zhonglin ;
Hu, Jin-Song ;
Pan, Zhenxiao ;
Shen, Qing ;
Sung, Jiankun ;
Long, Donghui ;
Dong, Hui ;
Sun, Litao ;
Zhong, Xinhua ;
Wan, Li-Jun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (12) :4201-4209
[7]   Molecular communication options for long range nanonetworks [J].
Gine, Lluis Parcerisa ;
Akyildiz, Ian F. .
COMPUTER NETWORKS, 2009, 53 (16) :2753-2766
[8]  
Kennedy M., 2008, RAY TRACE MODELLING
[9]   Monte Carlo ray-tracing simulations of luminescent solar concentrators for building integrated photovoltaics [J].
Leow, Shin Woei ;
Corrado, Carley ;
Osborn, Melissa ;
Carter, Sue A. .
HIGH AND LOW CONCENTRATOR SYSTEMS FOR SOLAR ELECTRIC APPLICATIONS VIII, 2013, 8821
[10]   High efficiency sandwich structure luminescent solar concentrators based on colloidal quantum dots [J].
Liu, Guiju ;
Mazzaro, Raffaello ;
Wang, Yiqian ;
Zhao, Haiguang ;
Vomiero, Alberto .
NANO ENERGY, 2019, 60 :119-126