Analysis of terrestrial water storage variations in South Korea using GRACE satellite and GLDAS data in Google Earth Engine

被引:3
|
作者
Cho, Younghyun [1 ]
机构
[1] K Water Korea Water Resources Corp, K Water Inst, 1689 beongil 125,Yuseongdaero,Yuseong-gu, Daejeon 34045, South Korea
关键词
GRACE; TWS; GLDAS; Google Earth Engine; water balance analysis; GROUNDWATER DEPLETION; RIVER; EVAPOTRANSPIRATION; MANAGEMENT; MODELS; BUDGET;
D O I
10.1080/02626667.2024.2351067
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
With the requirement of a macroscopic approach to understanding the relationship between water resources and hydrological phenomena, such as severe droughts under climate change, this study investigates South Korea's long-term terrestrial water storage (TWS) using GRACE satellite data. A detailed analysis of water balance in TWS, based on the GLDAS model outputs in Google Earth Engine, reveals the following results: (1) TWS anomaly shows an average decrease of -33.5 mm year-1 from 2003 to 2016; (2) spatial shifts in TWS anomaly (-1.176 to -0.424 cm) unveil regional water storage dynamics, indicating negative temporal slope changes per grid cell (-0.393 to -0.225); (3) contributions of precipitation to TWS are not always straightforward, due to runoff inefficiencies affecting water storage and groundwater; (4) accessible water, integrating surface water and groundwater linked only to the shallow layer's soil moisture, constrains deep groundwater accounting, emphasizing the need for local groundwater surveys in further research.
引用
收藏
页码:1032 / 1045
页数:14
相关论文
共 50 条
  • [21] Monitoring Terrestrial Water Storage Using GRACE/GRACE-FO Data over India: A Review
    Maniranjan Kumar
    Pramod Soni
    Debshri Swargiary
    Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2025, 49 (3) : 2225 - 2239
  • [22] Monitoring groundwater storage variations in the Guanzhong area using GRACE satellite gravity data
    Li WanQiu
    Wang Wei
    Zhang ChuanYin
    Yang Qiang
    Feng Wei
    Liu Yang
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2018, 61 (06): : 2237 - 2245
  • [23] Significance of surface water in the terrestrial water budget: A case study in the Prairie Coteau using GRACE, GLDAS, Landsat, and groundwater well data
    Proulx, Rob A.
    Knudson, Michael D.
    Kirilenko, Andrei
    VanLooy, Jeffrey A.
    Zhang, Xiaodong
    WATER RESOURCES RESEARCH, 2013, 49 (09) : 5756 - 5764
  • [24] Using Satellite-Based Terrestrial Water Storage Data: A Review
    Vincent Humphrey
    Matthew Rodell
    Annette Eicker
    Surveys in Geophysics, 2023, 44 : 1489 - 1517
  • [25] Urban Growth Modeling using Historical Landsat Satellite Data Archive on Google Earth Engine
    Miyazaki, Hiroyuki
    Bhushan, Himanshu
    Wakiya, Kotone
    2019 FIRST INTERNATIONAL CONFERENCE ON SMART TECHNOLOGY & URBAN DEVELOPMENT (STUD), 2019, : 61 - 65
  • [26] MONITORING TERRESTRIAL WATER STORAGE CHANGES AND DROUGHT IN JIANGXI PROVINCE USING GRACE AND GRACE FOLLOW-ON-DATA
    Huan, Changmin
    Lu, Tieding
    Zhou, Shijian
    Wang, Fengwei
    Wu, Zhao
    ACTA GEODYNAMICA ET GEOMATERIALIA, 2023, 20 (03): : 111 - 120
  • [27] Reconstruction of GRACE terrestrial water storage anomalies using Multi-Layer Perceptrons for South Indian River basins
    Kumar, K. Satish
    AnandRaj, P.
    Sreelatha, K.
    Sridhar, Venkataramana
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 857
  • [28] Cropland data fusion and correction using spatial analysis techniques and the Google Earth Engine
    Li, Kewei
    Xu, Erqi
    GISCIENCE & REMOTE SENSING, 2020, 57 (08) : 1026 - 1045
  • [29] Machine Learning Algorithms for Satellite Image Classification Using Google Earth Engine and Landsat Satellite Data: Morocco Case Study
    Ouchra, Hafsa
    Belangour, Abdessamad
    Erraissi, Allae
    IEEE ACCESS, 2023, 11 : 71127 - 71142
  • [30] Identifying and separating climate- and human-driven water storage anomalies using GRACE satellite data
    Liu, Bingshi
    Zou, Xiancai
    Yi, Shuang
    Sneeuw, Nico
    Cai, Jianqing
    Li, Jiancheng
    REMOTE SENSING OF ENVIRONMENT, 2021, 263