Development of non-oxidized graphene flakes (NOGF)/polyvinylidene fluoride (PVDF) composites for high-performance EMI shielding efficiency

被引:0
作者
Lee, Ja Yoon [1 ]
Hwang, In Hyeok [1 ]
Yang, Hyun Seong [1 ]
Kim, Jungmo [2 ]
Kim, Jin [3 ]
Jun, Yun-Seok [1 ]
机构
[1] Pukyong Natl Univ, Dept Polymer Engn, 45 Yongso Ro, Busan 48513, South Korea
[2] Korea Electrotechnol Res Inst KERI, Nano Hybrid Technol Res Ctr, Changwon Si, South Korea
[3] Hanbat Natl Univ, Dept Mat Sci & Engn, Daejeon 34158, South Korea
关键词
Composites; EMI shielding; non-oxidative graphene flakes (NOGF); PVDF;
D O I
10.1080/15421406.2024.2353946
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As numerous communication devices use multiband electromagnetic waves in modern society, electromagnetic interference (EMI) shielding materials become increasingly important due to the harmful effects of electromagnetic waves. While metal-based materials have shown high shielding performance, they have many drawbacks such as high density, high processing cost, and low corrosion resistance. Conductive polymer composites (CPCs), which can overcome these shortcomings of metal-based materials, have become increasingly popular in recent years. In this study, non-oxidized graphene flakes (NOGFs) are synthesized by exfoliating the ternary graphite intercalant compound (t-GIC) and used as fillers for CPCs. The electrical conductivity and EMI shielding effiency (SE) of NOGF/polyvinylidene fluoride (PVDF), graphite/PVDF and reduced graphene oxide (rGO)/PVDF composites are investigated. NOGF/PVDF composites showed notably enhanced electrical conductivity and EMI SE than the others. This is mostly due to the non-oxidative fabrication method that does not destroy the sp2 structure of graphene sheet, thus preserving the unique electrical properties of graphene.
引用
收藏
页码:410 / 415
页数:6
相关论文
共 16 条
[1]  
Akbaba M., 2015, TURKISH J OCCUP MED, V2, P1
[2]  
Batool S, 2019, EUR REV MED PHARMACO, V23, P3121, DOI 10.26355/eurrev_201904_17596
[3]   Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies [J].
Cancado, L. G. ;
Jorio, A. ;
Martins Ferreira, E. H. ;
Stavale, F. ;
Achete, C. A. ;
Capaz, R. B. ;
Moutinho, M. V. O. ;
Lombardo, A. ;
Kulmala, T. S. ;
Ferrari, A. C. .
NANO LETTERS, 2011, 11 (08) :3190-3196
[4]   Hierarchical Porous Film with Layer-by-Layer Assembly of 2D Copper Nanosheets for Ultimate Electromagnetic Interference Shielding [J].
Choi, Ho Kwang ;
Lee, Aram ;
Park, Mina ;
Lee, Dong Su ;
Bae, Sukang ;
Lee, Seoung-Ki ;
Lee, Sang Hyun ;
Lee, Takhee ;
Kim, Tae-Wook .
ACS NANO, 2021, 15 (01) :829-839
[5]   Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy [J].
Dresselhaus, Mildred S. ;
Jorio, Ado ;
Hofmann, Mario ;
Dresselhaus, Gene ;
Saito, Riichiro .
NANO LETTERS, 2010, 10 (03) :751-758
[6]   EMI Shielding: Methods and Materials-A Review [J].
Geetha, S. ;
Kumar, K. K. Satheesh ;
Rao, Chepuri R. K. ;
Vijayan, M. ;
Trivedi, D. C. .
JOURNAL OF APPLIED POLYMER SCIENCE, 2009, 112 (04) :2073-2086
[7]   The Scherrer equation versus the 'Debye-Scherrer equation' [J].
Holzwarth, Uwe ;
Gibson, Neil .
NATURE NANOTECHNOLOGY, 2011, 6 (09) :534-534
[8]   Enhanced electrical and mechanical properties of graphene nanoribbon/thermoplastic polyurethane composites [J].
Jun, Yun-seok ;
Habibpour, Saeed ;
Hamidinejad, Mahdi ;
Park, Moon Gyu ;
Ahn, Wook ;
Yu, Aiping ;
Park, Chul B. .
CARBON, 2021, 174 :305-316
[9]  
Kaur M., 2011, 2011 3rd International Conference on Electronics Computer Technology (ICECT 2011), P1, DOI 10.1109/ICECTECH.2011.5941844
[10]   Extremely large, non-oxidized graphene flakes based on spontaneous solvent insertion into graphite intercalation compounds [J].
Kim, Jungmo ;
Yoon, Gabin ;
Kim, Jin ;
Yoon, Hyewon ;
Baek, Jinwook ;
Lee, Joong Hee ;
Kang, Kisuk ;
Jeon, Seokwoo .
CARBON, 2018, 139 :309-316