A GPU Numerical Implementation of a 2D Simplified Wildfire Spreading Model

被引:0
|
作者
San Martin, Daniel [1 ]
Torres, Claudio E. [1 ,2 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Informat, Valparaiso, Chile
[2] Univ Tecn Federico Santa Maria, Ctr Cient Tecnol Valparaiso, Valparaiso, Chile
来源
HIGH PERFORMANCE COMPUTING, CARLA 2023 | 2024年 / 1887卷
关键词
Wildfires; Numerical Methods; GPU; CUDA; Scientific Computing; CELLULAR-AUTOMATA MODEL; WILDLAND FIRE MODEL; SIMULATION;
D O I
10.1007/978-3-031-52186-7_9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Wildfires are a latent problem worldwide that every year burns thousands of hectares, negatively impacting the environment. To mitigate the damage, there is software to support wildfire analysis. Many of these computational tools are based on different mathematical models, each with its own advantages and disadvantages. Unfortunately, only a few of the software are open source. This work aims to develop an open-source GPU implementation of a mathematical model for the spread of wildfires using CUDA. The algorithm is based on the Method of Lines, allowing it to work with a system of partial differential equations as a dynamical system. We present the advantages of a GPU versus C and an OpenMP multi-threaded CPU implementation for computing the outcome of several scenarios.
引用
收藏
页码:131 / 145
页数:15
相关论文
共 50 条
  • [1] An optimized GPU implementation of a 2D free surface simulation model on unstructured meshes
    Lacasta, A.
    Morales-Hernandez, M.
    Murillo, J.
    Garcia-Navarro, P.
    ADVANCES IN ENGINEERING SOFTWARE, 2014, 78 : 1 - 15
  • [2] Computational strategies for implementation of 2D elastic wave modeling in GPU
    Paez, A.
    Sanchez, I. J.
    Ramirez, A. B.
    ENTRE CIENCIA E INGENIERIA, 2020, 14 (28): : 52 - 58
  • [3] IMPLEMENTATION OF 2D COMPUTATIONAL MODELS FOR NDE ON GPU
    Bardel, Charles
    Lei, Naiguang
    Udpa, Lalita
    REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLS 31A AND 31B, 2012, 1430 : 729 - 736
  • [4] Assessment of GPU computational enhancement to a 2D flood model
    Kalyanapu, Alfred J.
    Shankar, Siddharth
    Pardyjak, Eric R.
    Judi, David R.
    Burian, Steven J.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2011, 26 (08) : 1009 - 1016
  • [5] 2D GPU-Accelerated High Resolution Numerical Scheme for Solving Diffusive Wave Equations
    Park, Seonryang
    Kim, Boram
    Kim, Dae-Hong
    WATER, 2019, 11 (07):
  • [6] An optimized GPU-based 2D convolution implementation
    Perrot, Gilles
    Domas, Stephane
    Couturier, Raphael
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2016, 28 (16) : 4291 - 4304
  • [7] A GPU-based 2D shallow water quality model
    Gordillo, Geovanny
    Morales-Hernandez, Mario
    Echeverribar, I
    Fernandez-Pato, Javier
    Garcia-Navarro, Pilar
    JOURNAL OF HYDROINFORMATICS, 2020, 22 (05) : 1182 - 1197
  • [8] Internal boundary conditions for a GPU-accelerated 2D shallow water model: Implementation and applications
    Dazzi, Susanna
    Vacondio, Renato
    Mignosa, Paolo
    ADVANCES IN WATER RESOURCES, 2020, 137
  • [9] Numerical simulation and GPU computing for the 2D wave equation with variable coefficient
    Altybay A.
    Darkenbayev D.
    Mekebayev N.
    International Journal of Simulation and Process Modelling, 2023, 20 (04) : 298 - 305
  • [10] A GPU-Accelerated Full 2D Shallow Water Model Using an Edge Loop Method on Unstructured Meshes: Implementation and Performance Analysis
    Ma, Liping
    Lian, Jijian
    Hou, Jingming
    Zhang, Dawei
    Wang, Xiaoqun
    WATER RESOURCES MANAGEMENT, 2024, 38 (02) : 733 - 752