Solution-processed Cu3V(S, Se)4 absorbers for thin films solar cells

被引:1
|
作者
Ren, Junting [1 ,3 ]
Yang, Yanchun [1 ,2 ,3 ]
Haschuluu, Oimod [1 ,3 ]
Liu, Yanqing [1 ,3 ]
Zhao, Xin [1 ,3 ]
Wang, Rui [1 ,3 ]
Bai, Lulu [1 ,3 ]
Li, Shuyu [2 ]
Lv, Xiaogong [4 ]
Zhu, Chengjun [2 ]
机构
[1] Inner Mongolia Normal Univ, Sch Phys & Elect Informat, Inner Mongolia Key Lab Phys & Chem Funct Mat, 81 Zhaowuda Rd, Hohhot 010022, Inner Mongolia, Peoples R China
[2] Inner Mongolia Univ, Sch Phys Sci & Technol, 2352 West Univ Rd, Hohhot 010021, Inner Mongolia, Peoples R China
[3] Inner Mongolia Normal Univ, Inner Mongolia Autonomous Reg Engn Res Ctr Rare Ea, 81 Zhaowuda Rd, Hohhot 010022, Inner Mongolia, Peoples R China
[4] Ordos Inst Technol, 1 Ordos St East, Ordos 017000, Inner Mongolia, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Cu3V(S; Se)4 thin films; Solution process; Air-baking; Selenization conditions; CUSBS2; PROSPECTS;
D O I
10.1016/j.ceramint.2024.04.371
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Cu 3 V(S, Se) 4 material is considered as a novel potential absorber of thin film solar cells due to its excellent properties. In this work, it is the first time that Cu 3 V(S, Se) 4 thin film solar cells are prepared by solution method, and the preparation process of fine absorbers is explored. The combination of air -baking and selenization processes boosts the excellent Cu 3 V(S, Se) 4 absorber. The optimal air -baking and selenization condition is confirmed as 360 degrees C for 20 min and 560 degrees C for 30 min, respectively. And the highest photoelectric conversion efficiency ( PCE ) of Cu 3 V(S, Se) 4 solar cells is 1.68 %. This is the first report on the solution preparation of Cu 3 V(S, Se) 4 thin film solar cells, and it is believed that performance of Cu 3 V(S, Se) 4 solar cells will be optimized by improving the preparation process in the future.
引用
收藏
页码:26446 / 26453
页数:8
相关论文
共 50 条
  • [41] Elemental Precursor Solution Processed (Cu1-xAgx)2ZnSn(S,Se)4 Photovoltaic Devices with over 10% Efficiency
    Qi, Yafang
    Tian, Qingwen
    Meng, Yuena
    Kou, Dongxing
    Zhou, Zhengji
    Zhou, Wenhui
    Wu, Sixin
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (25) : 21243 - 21250
  • [42] Understanding defects and band tailing characteristics and their impact on the device performance of Cu2ZnSn(S,Se)4 solar cells
    Karade, Vijay C.
    Suryawanshi, Mahesh P.
    Jang, Jun Sung
    Gour, Kuldeep Singh
    Jang, Suyoung
    Park, Jongsung
    Kim, Jin Hyeok
    Shin, Seung Wook
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (15) : 8466 - 8478
  • [43] Tuning the Se Content in Cu2ZnSn(S, Se)4 Absorber to Achieve 9.7% Solar Cell Efficiency from a Thiol/Amine-Based Solution Process
    Fu, Junjie
    Fu, Jie
    Tian, Qingwen
    Wang, Houlin
    Zhao, Fengming
    Kong, Jun
    Zhao, Xiangyun
    Wu, Sixin
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (02): : 594 - 601
  • [44] Direct solution deposition of device quality Sb2S3-xSex films for high efficiency solar cells
    Wu, Chunyan
    Zhang, Lijian
    Ding, Honghe
    Ju, Huanxin
    Jin, Xin
    Wang, Xiaomin
    Zhu, Changfei
    Chen, Tao
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 183 : 52 - 58
  • [45] Fully stoichiometric Cu2BaSn(S1-xSex)4 solar cells via chemical solution deposition
    Wang, Chen
    Yi, Qinghua
    Zhang, Qiang
    Wang, Fumao
    Zou, Guifu
    NANOTECHNOLOGY, 2020, 31 (19)
  • [46] Efficient flexible Mo foil-based Cu2ZnSn(S, Se)4 solar cells from In-doping technique
    Yu, Xue
    Cheng, Shuying
    Yan, Qiong
    Fu, Junjie
    Jia, Hongjie
    Sun, Quanzhen
    Yang, Zhiyuan
    Wu, Sixin
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 209
  • [47] 3-D architecture between indium tin oxide nano-rods and a solution processed CuInGaS2 absorber layer for thin film solar cells
    Chu, Van Ben
    Kim, Chan Sik
    Park, Gi Soon
    Lee, Young Ki
    Hwang, Yun Jeong
    Do, Young Rag
    Min, Byoung Koun
    THIN SOLID FILMS, 2017, 636 : 506 - 511
  • [48] Li plus &Ag plus and Li+&Cd2+double-ion-doping strategy to improve the efficiency of Cu2ZnSn(S,Se)4 solar cells
    Tong, Junye
    Wang, Shaotong
    Wang, Gang
    Liu, Yue
    Wang, Yuxiang
    Chen, Liping
    Wang, Lingling
    Pan, Daocheng
    Zhang, Xintong
    Liu, Yichun
    SOLAR ENERGY, 2021, 220 : 882 - 889
  • [49] RGB-Colored Cu(In,Ga)(S,Se)2 Thin-Film Solar Cells with Minimal Efficiency Loss Using Narrow-Bandwidth Stopband Nano-Multilayered Filters
    Lee, Soyoung
    Yoo, Gang Yeol
    Kim, Byungwoo
    Kim, Min Kyu
    Kim, Changwook
    Park, Sang Yeun
    Yoon, Hee Chang
    Kim, Woong
    Min, Byoung Koun
    Do, Young Rag
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (10) : 9994 - 10003
  • [50] Solvent Engineering-Enabled Surface Defect Passivation in Cu2ZnSn(S,Se)4 Solar Cells with Low Open-Circuit Voltage Losses and Improved Carrier Lifetime
    Farooq, Umar
    Han, Boyang
    Ali Shah, Usman
    Yang, Fa
    Li, Sheng
    Song, Yanping
    Hassan, Ali
    Li, Zhengquan
    Wang, Jin
    CHEMSUSCHEM, 2025,