Finite element analysis of composite laminates subjected to low-velocity impact based on multiple failure criteria

被引:18
作者
Wang, Z. W. [1 ,2 ]
Zhao, J. P. [1 ,2 ]
Zhang, X. [1 ,2 ]
机构
[1] Nanjing Tech Univ, Sch Mech & Power Engn, Nanjing 211816, Jiangsu, Peoples R China
[2] Jiangsu Key Lab Design & Manufacture Extreme Pres, Nanjing 211816, Jiangsu, Peoples R China
关键词
composite laminates; low-velocity impact; failure criteria; analytical approximation; computational cost; PROGRESSIVE DAMAGE MODEL; FRACTURE ANGLE; UD COMPOSITES; DELAMINATION; PREDICTION; MECHANICS; ALGORITHM; EFFICIENT; PANEL;
D O I
10.1088/2053-1591/aacca3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Progressive damage models based on continuum damage mechanics are used in combination with cohesive elements to explore the effect of three different failure criteria including Chang-Chang, Hashin and Puck criteria, on the structural response and the failure mechanisms of composite laminates subjected to low-velocity impact. Three different failure criteria and damage evolution laws based on equivalent strain are used for intralaminar damage models, and the delamination is simulated by the bilinear cohesive model based on quadratic criteria. A new numerical optimization method combining analytical approximation and Golden section Search has been applied in Puck criteria to search the fracture plane. Numerical analysis is performed on two composite laminates specimens with different materials, layups and impact energy to study the impact force-time, force-displacement and absorbed energy, computational cost, as well as the damage evolution behaviors of fiber, matrix and delamination. The numerical results with three different failure criteria show acceptable accord with available experimental data, which validate the accuracy of the proposed damage model. Moreover, this research can be helpful to select appropriate failure criteria in the progressive failure analysis of composite laminates under low velocity impact.
引用
收藏
页数:17
相关论文
共 35 条
[1]  
Abrate Serge., 1998, IMPACT COMPOSITE STR, DOI 10.1017/CBO9780511574504
[2]  
[Anonymous], 2008, THESIS
[3]   Prediction of impact-induced delamination in cross-ply composite laminates using cohesive interface elements [J].
Aymerich, F. ;
Dore, F. ;
Priolo, P. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2008, 68 (12) :2383-2390
[4]   Damage response of stitched cross-ply laminates under impact loadings [J].
Aymerich, F. ;
Pani, C. ;
Priolo, P. .
ENGINEERING FRACTURE MECHANICS, 2007, 74 (04) :500-514
[5]   Damage and failure in low energy impact of fiber-reinforced polymeric composite laminates [J].
Batra, R. C. ;
Gopinath, G. ;
Zheng, J. Q. .
COMPOSITE STRUCTURES, 2012, 94 (02) :540-547
[6]   Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus [J].
Benzeggagh, ML ;
Kenane, M .
COMPOSITES SCIENCE AND TECHNOLOGY, 1996, 56 (04) :439-449
[7]  
Camanho PP, 2003, J COMPOS MATER, V37, P1415, DOI [10.1177/0021998303034505, 10.1177/002199803034505]
[8]   A PROGRESSIVE DAMAGE MODEL FOR LAMINATED COMPOSITES CONTAINING STRESS-CONCENTRATIONS [J].
CHANG, FK ;
CHANG, KY .
JOURNAL OF COMPOSITE MATERIALS, 1987, 21 (09) :834-855
[9]   A NEW APPROACH TOWARD UNDERSTANDING DAMAGE MECHANISMS AND MECHANICS OF LAMINATED COMPOSITES DUE TO LOW-VELOCITY IMPACT .2. ANALYSIS [J].
CHOI, HY ;
WU, HYT ;
CHANG, FK .
JOURNAL OF COMPOSITE MATERIALS, 1991, 25 (08) :1012-1038
[10]   Predicting low-velocity impact damage on a stiffened composite panel [J].
Faggiani, A. ;
Falzon, B. G. .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2010, 41 (06) :737-749