Genomic prediction in Brassica napus: evaluating the benefit of imputed whole-genome sequencing data

被引:0
|
作者
Weber, Sven E. [1 ]
Roscher-Ehrig, Lennard [1 ]
Kox, Tobias [2 ]
Abbadi, Amine [2 ]
Stahl, Andreas [3 ]
Snowdon, Rod J. [1 ]
机构
[1] Justus Liebig Univ, IFZ Res Ctr Biosyst Land Use & Nutr, Dept Plant Breeding, Giessen, Germany
[2] NPZ Innovat GmbH, Holtsee, Germany
[3] Julius Kuehn Inst JKI, Inst Resistance Res & Stress Tolerance, Fed Res Ctr Cultivated Plants, Quedlinburg, Germany
关键词
genomic prediction; imputation; whole-genome sequencing; SNP markers; MARKER-ASSISTED SELECTION; GENOTYPE IMPUTATION; MISSING HERITABILITY; SNP ARRAY; ACCURACY; POPULATIONS; DENSITY; TRAITS; WHEAT; OPTIMIZATION;
D O I
10.1139/gen-2023-0126
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Advances in sequencing technology allow whole plant genomes to be sequenced with high quality. Combining genotypic and phenotypic data in genomic prediction helps breeders to select crossing partners in partially phenotyped populations. In plant breeding programs, the cost of sequencing entire breeding populations still exceeds available genotyping budgets. Hence, the method for genotyping is still mainly single nucleotide polymorphism (SNP) arrays; however, arrays are unable to assess the entire genome- and population-wide diversity. A compromise involves genotyping the entire population using an SNP array and a subset of the population with whole-genome sequencing. Both datasets can then be used to impute markers from whole-genome sequencing onto the entire population. Here, we evaluate whether imputation of whole-genome sequencing data enhances genomic predictions, using data from a nested association mapping population of rapeseed (Brassica napus). Employing two cross-validation schemes that mimic scenarios for the prediction of close and distant relatives, we show that imputed marker data do not significantly improve prediction accuracy, likely due to redundancy in relationship estimates and imputation errors. In simulation studies, only small improvements were observed, further corroborating the findings. We conclude that SNP arrays are already equipped with the information that is added by imputation through relationship and linkage disequilibrium.
引用
收藏
页码:210 / 222
页数:13
相关论文
共 50 条
  • [1] Strategies for Obtaining and Pruning Imputed Whole-Genome Sequence Data for Genomic Prediction
    Ye, Shaopan
    Gao, Ning
    Zheng, Rongrong
    Chen, Zitao
    Teng, Jinyan
    Yuan, Xiaolong
    Zhang, Hao
    Chen, Zanmou
    Zhang, Xiquan
    Li, Jiaqi
    Zhang, Zhe
    FRONTIERS IN GENETICS, 2019, 10
  • [2] Genomic prediction using imputed whole-genome sequence data in Holstein Friesian cattle
    van Binsbergen, Rianne
    Calus, Mario P. L.
    Bink, Marco C. A. M.
    van Eeuwijk, Fred A.
    Schrooten, Chris
    Veerkamp, Roel F.
    GENETICS SELECTION EVOLUTION, 2015, 47
  • [3] Genomic prediction using imputed whole-genome sequence data in Holstein Friesian cattle
    Rianne van Binsbergen
    Mario P. L. Calus
    Marco C. A. M. Bink
    Fred A. van Eeuwijk
    Chris Schrooten
    Roel F. Veerkamp
    Genetics Selection Evolution, 47
  • [4] Accuracy of genomic prediction using imputed whole-genome sequence data in white layers
    Heidaritabar, M.
    Calus, M. P. L.
    Megens, H-J.
    Vereijken, A.
    Groenen, M. A. M.
    Bastiaansen, J. W. M.
    JOURNAL OF ANIMAL BREEDING AND GENETICS, 2016, 133 (03) : 167 - 179
  • [5] Genomic Prediction Using Imputed Whole-Genome Sequence Data in Australian Angus Cattle
    Kamprasert, Nantapong
    Aliloo, Hassan
    van Der Werf, Julius H. J.
    Duff, Christian J.
    Clark, Samuel A.
    JOURNAL OF ANIMAL BREEDING AND GENETICS, 2024,
  • [6] Incorporating genomic annotation into single-step genomic prediction with imputed whole-genome sequence data
    TENG Jin-yan
    YE Shao-pan
    GAO Ning
    CHEN Zi-tao
    DIAO Shu-qi
    LI Xiu-jin
    YUAN Xiao-long
    ZHANG Hao
    LI Jia-qi
    ZHANG Xi-quan
    ZHANG Zhe
    JournalofIntegrativeAgriculture, 2022, 21 (04) : 1126 - 1136
  • [7] Incorporating genomic annotation into single-step genomic prediction with imputed whole-genome sequence data
    Teng Jin-yan
    Ye Shoo-pan
    Gao Ning
    Chen Zi-tao
    Diao Shu-qi
    Li Xiu-jin
    Yuan Xiao-long
    Zhang Hao
    Li Jia-qi
    Zhang Xi-quan
    Zhang Zhe
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2022, 21 (04) : 1126 - 1136
  • [8] Genome-wide association study and genomic prediction for intramuscular fat content in Suhuai pigs using imputed whole-genome sequencing data
    Wang, Binbin
    Li, Pinghua
    Hou, Liming
    Zhou, Wuduo
    Tao, Wei
    Liu, Chenxi
    Liu, Kaiyue
    Niu, Peipei
    Zhang, Zongping
    Li, Qiang
    Su, Guosheng
    Huang, Ruihua
    EVOLUTIONARY APPLICATIONS, 2022, 15 (12): : 2054 - 2066
  • [9] Genomic prediction using imputed whole-genome sequence variants in Brown Swiss Cattle
    Frischknecht, Mirjam
    Meuwissen, Theodorus H. E.
    Bapst, Beat
    Seefried, Franz R.
    Flury, Christine
    Garrick, Dorian
    Signer-Hasler, Heidi
    Stricker, Christian
    Bieber, Anna
    Fries, Ruedi
    Russ, Ingolf
    Soelkner, Johann
    Bagnato, Alessandro
    Gredler-Grandl, Birgit
    JOURNAL OF DAIRY SCIENCE, 2018, 101 (02) : 1292 - 1296
  • [10] Using imputed whole-genome sequence data to improve the accuracy of genomic prediction for parasite resistance in Australian sheep
    Al Kalaldeh, Mohammad
    Gibson, John
    Duijvesteijn, Naomi
    Daetwyler, Hans D.
    MacLeod, Iona
    Moghaddar, Nasir
    Lee, Sang Hong
    van der Werf, Julius H. J.
    GENETICS SELECTION EVOLUTION, 2019, 51 (1)