共 42 条
A deep learning framework for the joint prediction of the SOH and RUL of lithium-ion batteries based on bimodal images
被引:19
作者:

Cai, Nian
论文数: 0 引用数: 0
h-index: 0
机构:
Guangdong Univ Technol, Sch Informat Engn, Room 709, Guangzhou 510006, Peoples R China Guangdong Univ Technol, Sch Informat Engn, Room 709, Guangzhou 510006, Peoples R China

Que, Xiaoping
论文数: 0 引用数: 0
h-index: 0
机构:
Guangdong Univ Technol, Sch Informat Engn, Room 709, Guangzhou 510006, Peoples R China Guangdong Univ Technol, Sch Informat Engn, Room 709, Guangzhou 510006, Peoples R China

Zhang, Xu
论文数: 0 引用数: 0
h-index: 0
机构:
Guangdong Univ Technol, Sch Informat Engn, Room 709, Guangzhou 510006, Peoples R China Guangdong Univ Technol, Sch Informat Engn, Room 709, Guangzhou 510006, Peoples R China

Feng, Weiguo
论文数: 0 引用数: 0
h-index: 0
机构:
Guangdong Univ Technol, Sch Informat Engn, Room 709, Guangzhou 510006, Peoples R China Guangdong Univ Technol, Sch Informat Engn, Room 709, Guangzhou 510006, Peoples R China

Zhou, Yinghong
论文数: 0 引用数: 0
h-index: 0
机构:
Guangdong Univ Technol, Sch Informat Engn, Room 709, Guangzhou 510006, Peoples R China Guangdong Univ Technol, Sch Informat Engn, Room 709, Guangzhou 510006, Peoples R China
机构:
[1] Guangdong Univ Technol, Sch Informat Engn, Room 709, Guangzhou 510006, Peoples R China
来源:
关键词:
Lithium-ion batteries;
State of health (SOH);
Remaining useful life (RUL);
Joint prediction;
Bimodal images;
Deep learning;
USEFUL LIFE PREDICTION;
SHORT-TERM-MEMORY;
MODEL;
STATE;
LSTM;
D O I:
10.1016/j.energy.2024.131700
中图分类号:
O414.1 [热力学];
学科分类号:
摘要:
Accurately predicting the state of health (SOH) and remaining useful life (RUL) is significant for batterypowered electric devices. Since the images generated from raw cyclic data of the batteries can reveal more inherent battery degradation characteristics than raw cyclic data studied in most of previous studies, the bimodal images generated by two methods, such as images of curves and Gramian angular field (GAF), are effectively integrated into a unified deep learning framework to predict the health states of lithiumion batteries. To this end, a bimodal fusion regression network (BFRN) is elaborately designed to jointly predict SOH and RUL of the battery, in which the features of bimodal images for the battery are fully extracted, interactively fused and aggregated by specific -designed network modules. Experiments on the public MIT/Stanford dataset indicate that the proposed method can achieve accurate joint state prediction for lithiumion batteries, with the coefficient of determination ( R 2 ) for the SOH and RUL tasks are 0.98 and 0.93, respectively, which is superior to existing deep learning methods. Experiments on another public battery dataset demonstrate that it can be practical and generalized for the batteries with other chemistries.
引用
收藏
页数:13
相关论文
共 42 条
[1]
Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation
[J].
Ali, Muhammad Umair
;
Zafar, Amad
;
Nengroo, Sarvar Hussain
;
Hussain, Sadam
;
Alvi, Muhammad Junaid
;
Kim, Hee-Je
.
ENERGIES,
2019, 12 (03)

Ali, Muhammad Umair
论文数: 0 引用数: 0
h-index: 0
机构:
Pusan Natl Univ, Sch Elect Engn, San 30,ChangJeon 2 Dong, Pusan 46241, South Korea Pusan Natl Univ, Sch Elect Engn, San 30,ChangJeon 2 Dong, Pusan 46241, South Korea

Zafar, Amad
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Wah, Dept Elect Engn, Wah Engn Coll, Wah Cantt 47040, Pakistan Pusan Natl Univ, Sch Elect Engn, San 30,ChangJeon 2 Dong, Pusan 46241, South Korea

Nengroo, Sarvar Hussain
论文数: 0 引用数: 0
h-index: 0
机构:
Pusan Natl Univ, Sch Elect Engn, San 30,ChangJeon 2 Dong, Pusan 46241, South Korea Pusan Natl Univ, Sch Elect Engn, San 30,ChangJeon 2 Dong, Pusan 46241, South Korea

论文数: 引用数:
h-index:
机构:

Alvi, Muhammad Junaid
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Engn & Technol, Dept Elect Engn, Lahore 54890, Pakistan Pusan Natl Univ, Sch Elect Engn, San 30,ChangJeon 2 Dong, Pusan 46241, South Korea

Kim, Hee-Je
论文数: 0 引用数: 0
h-index: 0
机构:
Pusan Natl Univ, Sch Elect Engn, San 30,ChangJeon 2 Dong, Pusan 46241, South Korea Pusan Natl Univ, Sch Elect Engn, San 30,ChangJeon 2 Dong, Pusan 46241, South Korea
[2]
Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network
[J].
Cheng, Gong
;
Wang, Xinzhi
;
He, Yurong
.
ENERGY,
2021, 232

Cheng, Gong
论文数: 0 引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China
Harbin Inst Technol, Sch Energy Sci & Engn, Heilongjiang Key Lab New Energy Storage Mat & Pro, Harbin 150001, Heilongjiang, Peoples R China Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China

Wang, Xinzhi
论文数: 0 引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China
Harbin Inst Technol, Sch Energy Sci & Engn, Heilongjiang Key Lab New Energy Storage Mat & Pro, Harbin 150001, Heilongjiang, Peoples R China Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China

He, Yurong
论文数: 0 引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China
Harbin Inst Technol, Sch Energy Sci & Engn, Heilongjiang Key Lab New Energy Storage Mat & Pro, Harbin 150001, Heilongjiang, Peoples R China Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China
[3]
Novel Image-Based Rapid RUL Prediction for Li-Ion Batteries Using a Capsule Network and Transfer Learning
[J].
Couture, Jonathan
;
Lin, Xianke
.
IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION,
2023, 9 (01)
:958-967

Couture, Jonathan
论文数: 0 引用数: 0
h-index: 0
机构:
Ontario Tech Univ, Dept Automot & Mechatron Engn, Oshawa, ON L1G 0C5, Canada Ontario Tech Univ, Dept Automot & Mechatron Engn, Oshawa, ON L1G 0C5, Canada

Lin, Xianke
论文数: 0 引用数: 0
h-index: 0
机构:
Ontario Tech Univ, Dept Automot & Mechatron Engn, Oshawa, ON L1G 0C5, Canada Ontario Tech Univ, Dept Automot & Mechatron Engn, Oshawa, ON L1G 0C5, Canada
[4]
Image- and health indicator-based transfer learning hybridization for battery RUL prediction
[J].
Couture, Jonathan
;
Lin, Xianke
.
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE,
2022, 114

Couture, Jonathan
论文数: 0 引用数: 0
h-index: 0
机构:
Ontario Tech Univ, Dept Automot & Mechatron Engn, Oshawa, ON L1G 0C5, Canada Ontario Tech Univ, Dept Automot & Mechatron Engn, Oshawa, ON L1G 0C5, Canada

Lin, Xianke
论文数: 0 引用数: 0
h-index: 0
机构:
Ontario Tech Univ, Dept Automot & Mechatron Engn, Oshawa, ON L1G 0C5, Canada Ontario Tech Univ, Dept Automot & Mechatron Engn, Oshawa, ON L1G 0C5, Canada
[5]
State of Health Diagnosis and Remaining Useful Life Prediction for Lithium-ion Battery Based on Data Model Fusion Method
[J].
Cui, Xiangbo
;
Hu, Tete
.
IEEE ACCESS,
2020, 8
:207298-207307

Cui, Xiangbo
论文数: 0 引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Mech & Elect Engn, State Key Lab High Performance Complex Mfg, Changsha 410083, Hunan, Peoples R China Cent South Univ, Sch Mech & Elect Engn, State Key Lab High Performance Complex Mfg, Changsha 410083, Hunan, Peoples R China

Hu, Tete
论文数: 0 引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Mech & Elect Engn, State Key Lab High Performance Complex Mfg, Changsha 410083, Hunan, Peoples R China Cent South Univ, Sch Mech & Elect Engn, State Key Lab High Performance Complex Mfg, Changsha 410083, Hunan, Peoples R China
[6]
Battery health estimation with degradation pattern recognition and transfer learning
[J].
Deng, Zhongwei
;
Lin, Xianke
;
Cai, Jianwei
;
Hu, Xiaosong
.
JOURNAL OF POWER SOURCES,
2022, 525

Deng, Zhongwei
论文数: 0 引用数: 0
h-index: 0
机构:
Chongqing Univ, Coll Mech & Vehicle Engn, Chongqing 400044, Peoples R China Chongqing Univ, Coll Mech & Vehicle Engn, Chongqing 400044, Peoples R China

Lin, Xianke
论文数: 0 引用数: 0
h-index: 0
机构:
Ontario Tech Univ, Dept Mech Engn, Oshawa, ON L1G 0C5, Canada Chongqing Univ, Coll Mech & Vehicle Engn, Chongqing 400044, Peoples R China

Cai, Jianwei
论文数: 0 引用数: 0
h-index: 0
机构:
Chongqing Changan Automot Co Ltd, Powertrain Engn R&D Inst, Chongqing 401133, Peoples R China Chongqing Univ, Coll Mech & Vehicle Engn, Chongqing 400044, Peoples R China

Hu, Xiaosong
论文数: 0 引用数: 0
h-index: 0
机构:
Chongqing Univ, Coll Mech & Vehicle Engn, Chongqing 400044, Peoples R China Chongqing Univ, Coll Mech & Vehicle Engn, Chongqing 400044, Peoples R China
[7]
A novel deep learning framework for state of health estimation of lithium-ion battery
[J].
Fan, Yaxiang
;
Xiao, Fei
;
Li, Chaoran
;
Yang, Guorun
;
Tang, Xin
.
JOURNAL OF ENERGY STORAGE,
2020, 32

Fan, Yaxiang
论文数: 0 引用数: 0
h-index: 0
机构:
Naval Univ Engn, Natl Key Lab Sci & Technol Vessel Integrated Powe, 717 Jiefang Ave, Wuhan 430033, Peoples R China Naval Univ Engn, Natl Key Lab Sci & Technol Vessel Integrated Powe, 717 Jiefang Ave, Wuhan 430033, Peoples R China

Xiao, Fei
论文数: 0 引用数: 0
h-index: 0
机构:
Naval Univ Engn, Natl Key Lab Sci & Technol Vessel Integrated Powe, 717 Jiefang Ave, Wuhan 430033, Peoples R China Naval Univ Engn, Natl Key Lab Sci & Technol Vessel Integrated Powe, 717 Jiefang Ave, Wuhan 430033, Peoples R China

Li, Chaoran
论文数: 0 引用数: 0
h-index: 0
机构:
Naval Univ Engn, Natl Key Lab Sci & Technol Vessel Integrated Powe, 717 Jiefang Ave, Wuhan 430033, Peoples R China Naval Univ Engn, Natl Key Lab Sci & Technol Vessel Integrated Powe, 717 Jiefang Ave, Wuhan 430033, Peoples R China

Yang, Guorun
论文数: 0 引用数: 0
h-index: 0
机构:
Naval Univ Engn, Natl Key Lab Sci & Technol Vessel Integrated Powe, 717 Jiefang Ave, Wuhan 430033, Peoples R China Naval Univ Engn, Natl Key Lab Sci & Technol Vessel Integrated Powe, 717 Jiefang Ave, Wuhan 430033, Peoples R China

Tang, Xin
论文数: 0 引用数: 0
h-index: 0
机构:
Naval Univ Engn, Natl Key Lab Sci & Technol Vessel Integrated Powe, 717 Jiefang Ave, Wuhan 430033, Peoples R China Naval Univ Engn, Natl Key Lab Sci & Technol Vessel Integrated Powe, 717 Jiefang Ave, Wuhan 430033, Peoples R China
[8]
A deep attention-assisted and memory-augmented temporal convolutional network based model for rapid lithium-ion battery remaining useful life predictions with limited data
[J].
Fei, Zicheng
;
Zhang, Zijun
;
Yang, Fangfang
;
Tsui, Kwok-Leung
.
JOURNAL OF ENERGY STORAGE,
2023, 62

Fei, Zicheng
论文数: 0 引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China

Zhang, Zijun
论文数: 0 引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China

Yang, Fangfang
论文数: 0 引用数: 0
h-index: 0
机构:
Sun Yat sen Univ, Sch Intelligent Syst Engn, Guangzhou, Peoples R China City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China

Tsui, Kwok-Leung
论文数: 0 引用数: 0
h-index: 0
机构:
Virginia Polytech Inst & State Univ, Grad Dept Ind & Syst Engn, Blacksburg, VA USA City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China
[9]
Early-stage lifetime prediction for lithium-ion batteries: A deep learning framework jointly considering machine-learned and handcrafted data features
[J].
Fei, Zicheng
;
Zhang, Zijun
;
Yang, Fangfang
;
Tsui, Kwok-Leung
;
Li, Lishuai
.
JOURNAL OF ENERGY STORAGE,
2022, 52

Fei, Zicheng
论文数: 0 引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China

Zhang, Zijun
论文数: 0 引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China

Yang, Fangfang
论文数: 0 引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Intelligent Syst Engn, Guangzhou, Peoples R China City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China

Tsui, Kwok-Leung
论文数: 0 引用数: 0
h-index: 0
机构:
Virginia Polytech Inst & State Univ, Grad Dept Ind & Syst Engn, Blacksburg, VA 24061 USA City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China

Li, Lishuai
论文数: 0 引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China
[10]
Early prediction of battery lifetime via a machine learning based framework
[J].
Fei, Zicheng
;
Yang, Fangfang
;
Tsui, Kwok-Leung
;
Li, Lishuai
;
Zhang, Zijun
.
ENERGY,
2021, 225

Fei, Zicheng
论文数: 0 引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China

Yang, Fangfang
论文数: 0 引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China

Tsui, Kwok-Leung
论文数: 0 引用数: 0
h-index: 0
机构:
Virginia Polytech Inst & State Univ, Grado Dept Ind & Syst Engn, Blacksburg, VA 24061 USA City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China

Li, Lishuai
论文数: 0 引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China

Zhang, Zijun
论文数: 0 引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China