Z-scheme S-modified Zn 0.2 Cd 0.8 S/ α-Fe 2 O 3 heterostructure for enhanced photoelectrochemical water oxidation

被引:0
|
作者
Shuai, Liye [1 ,2 ,3 ]
Chen, Fukun [1 ,2 ,3 ]
Chai, Hongli [1 ,2 ,3 ]
Tian, Lu [2 ,3 ]
Dou, Jinxiao [2 ,3 ]
Huang, Xinning [1 ,2 ,3 ]
Yu, Jianglong [2 ,3 ,4 ]
Taimoor, Sana [5 ]
Sun, Zhenyu [5 ]
Chen, Xingxing [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol Liaoning, Sch Chem Engn, Res Grp Funct Mat Electrochem Energy Convers, Qianshan Middle Rd 185, Anshan, Liaoning, Peoples R China
[2] Univ Sci & Technol Liaoning, Sch Chem Engn, Key Lab Adv Coal & Coking Technol Liaoning Prov, Qianshan Middle Rd 185, Anshan, Peoples R China
[3] Univ Sci & Technol Liaoning, Res Inst Clean Energy & Fuel Chem, Sch Chem Engn, Qianshan Middle Rd 185, Anshan, Peoples R China
[4] Suzhou Ind Pk Monash Res Inst Sci & Technol, Suzhou, Peoples R China
[5] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
关键词
Photoelectrochemical (PEC) water oxidation; Heterojunction engineering; Surface modification; CHARGE SEPARATION; HETEROJUNCTION; BIVO4; COCATALYST; PHOTOANODE; EFFICIENCY; ZNCDS;
D O I
10.1016/j.materresbull.2024.112848
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A Z -type heterojunction system is proven to be an efficient strategy to promote the separation of photo-generated carriers and maintain strong redox capacity for an enhanced photoanode. Herein, we synthesized a S-modified Fe 2 O 3 /Zn 0.2 Cd 0.8 S (Fe/ZCS) photoanode by one-pot hydrothermal treatment of FeOOH/Zn 0.2 Cd 0.8 S precursor film, followed by vapor deposition treatment. The as-synthesized S-modified Fe/ZCS displayed enhanced PEC water oxidation performance with a photocurrent density (2.76 mA cm -2 ) of about 2.63 times that of a pure phase Fe 2 O 3 and 2.05 times that of Fe/ZCS at 1.23 V RHE . After 8 h of continuous operation, the photocurrent density retention rate was still 96.4 % demonstrating its satisfactory stability. Benefiting from the morphology of fine nanorods, the fabricated Z-scheme heterostructure exhibited strong oxidation - reduction ability and the welldistributed Fe(III)-SO 4 2- bonds played key roles as the electron capture centers. The fabricated Z-scheme photoanode exhibited prospective applications in sustainable photoelectrochemical water oxidation.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A hybrid MOFs/Ti-Fe 2 O 3 Z-scheme photoanode with enhanced charge separation and transfer for efficient photoelectrochemical water oxidation
    Ba, Kaikai
    Liu, Yunan
    Wang, Ping
    Lin, Yanhong
    Wang, Dejun
    Xie, Tengfeng
    JOURNAL OF CATALYSIS, 2024, 435
  • [2] Photoelectrochemical Sensor with a Z-Scheme Fe2O3/CdS Heterostructure for Sensitive Detection of Mercury Ions
    Ren, Xiang
    Chen, Jingui
    Wang, Chao
    Wu, Dan
    Ma, Hongmin
    Wei, Qin
    Ju, Huangxian
    ANALYTICAL CHEMISTRY, 2023, 95 (46) : 16943 - 16949
  • [3] ZnCo2S4/Zn0.2Cd0.8 S Z-scheme heterojunction: Efficient photocatalytic H2 evolution coupling selective oxidation of benzyl alcohol
    Li, Chunhe
    Shan, Shunyi
    Ren, Kuankuan
    Dou, Weidong
    He, Chunqing
    Fang, Pengfei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (92) : 38951 - 38963
  • [4] Preparation of Mn0.8Cd0.2S/NiCo2S4 Z-scheme heterojunction composite for enhanced photocatalytic hydrogen production
    Wang, Hao
    Liu, Qian
    Ji, Tingting
    Zhao, Ruiyang
    Li, Lu
    Han, Jishu
    Wang, Lei
    SURFACES AND INTERFACES, 2024, 45
  • [5] Synthesis and characterization of Z-scheme α-Fe2O3 NTs/ruptured tubular g-C3N4 for enhanced photoelectrochemical water oxidation
    Bakr, Ahmed Esmail A.
    El Rouby, Waleed M. A.
    Khan, Malik D.
    Farghali, Ahmed A.
    Xulu, B.
    Revaprasadu, Neerish
    SOLAR ENERGY, 2019, 193 : 403 - 412
  • [6] In Situ Construction of Direct Z-Scheme Cd0.8Mn0.2S/NiTiO3 Heterojunction for Photocatalytic Overall Water Splitting
    Shao, Xinxin
    Wang, Yanan
    Xu, Jiapeng
    Li, Renjie
    Peng, Tianyou
    ENERGY & FUELS, 2025, 39 (04) : 2203 - 2215
  • [7] α-Fe2O3/NiOOH: An Effective Heterostructure for Photoelectrochemical Water Oxidation
    Malara, Francesco
    Minguzzi, Alessandro
    Marelli, Marcello
    Morandi, Sara
    Psaro, Rinaldo
    Dal Santo, Vladimiro
    Naldoni, Alberto
    ACS CATALYSIS, 2015, 5 (09): : 5292 - 5300
  • [8] Enhanced Photoelectrochemical Water Oxidation Performance of Fe2O3 Nanorods Array by S Doping
    Zhang, Rong
    Fang, Yiyu
    Chen, Tao
    Qu, Fengli
    Liu, Zhiang
    Du, Gu
    Asiri, Abdullah M.
    Gao, Tao
    Sun, Xuping
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (09): : 7502 - 7506
  • [9] Cobalt-phosphate modified Fe-Zn0.2Cd0.8S/CuSbS2 heterojunction photoanode with multiple synergistic effect for enhancing photoelectrochemical water splitting
    Wu, Peidong
    Liu, Zhifeng
    Ruan, Mengnan
    Guo, Zhengang
    Zhao, Lei
    APPLIED SURFACE SCIENCE, 2019, 476 : 716 - 723
  • [10] Fabrication of Direct Z-scheme α-Fe2O3/FeVO4 Nanobelts with Enhanced Photoelectrochemical Performance
    Wang, Qinyu
    Liu, Zhendong
    Lu, Qifang
    Guo, Enyan
    Wei, Mingzhi
    CHEMISTRYSELECT, 2018, 3 (02): : 809 - 815