Irreducibility and Galois groups of truncated binomial polynomials

被引:0
作者
Laishram, Shanta [1 ]
Yadav, Prabhakar [1 ]
机构
[1] Indian Stat Inst, Stat & Math Unit, New Delhi 110016, India
关键词
Truncated binomial polynomials; irreducibility; Galois groups; primes; valuations; Newton polygons; squares;
D O I
10.1142/S1793042124500817
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For positive integers n >= m, let P-n,P-m(x) :=& sum;(m )(j=0)((n) (j)) x(j) = ((n) (0)) + ((n) (1))x + & mldr; + ((n) (m))x(m) be the truncated binomial expansion of (1 + x)(n) consisting of all terms of degree <= m. It is conjectured that for n > m + 1, the polynomial P-n,P-m(x) is irreducible. We confirm this conjecture when 2m <= n < (m + 1)(10). Also we show for any r >= 10 and 2m <= n < (m + 1)(r+1), the polynomial P-n,P-m(x) is irreducible when m >= max{10(6), 2r(3)}. Under the explicit abc-conjecture, for a fixed m, we give an explicit n(0), n(1) depending only on m such that for all n >= n(0), the polynomial P-n,P-m(x) is irreducible. Further for all n >= n(1), the Galois group associated to P-n,P-m(x) is the symmetric group S-m.
引用
收藏
页码:1663 / 1680
页数:18
相关论文
共 50 条
[41]   Zeros and irreducibility of polynomials with gcd powers as coefficients [J].
Dilcher, Karl ;
Robins, Sinai .
RAMANUJAN JOURNAL, 2015, 36 (1-2) :227-236
[42]   Families of Laguerre polynomials with alternating group as Galois group [J].
Jindal, Ankita ;
Laishram, Shanta .
JOURNAL OF NUMBER THEORY, 2022, 241 :387-429
[43]   An irreducibility question concerning modifications of Laguerre polynomials [J].
Banerjee, Pradipto ;
Bera, Ranjan .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2020, 16 (05) :1031-1051
[44]   Zeros and irreducibility of polynomials with gcd powers as coefficients [J].
Karl Dilcher ;
Sinai Robins .
The Ramanujan Journal, 2015, 36 :227-236
[45]   Absolute irreducibility of polynomials via newton polytopes [J].
Gao, SH .
JOURNAL OF ALGEBRA, 2001, 237 (02) :501-520
[46]   Small Galois groups that encode valuations [J].
Efrat, Ido ;
Minac, Jan .
ACTA ARITHMETICA, 2012, 156 (01) :7-17
[47]   Irreducibility properties of Carlitz' binomial coefficients for algebraic function fields [J].
Tichy, Robert ;
Windisch, Daniel .
FINITE FIELDS AND THEIR APPLICATIONS, 2024, 96
[48]   GALOIS p-GROUPS AND GALOIS MODULES [J].
Chebolu, Sunil ;
Minac, Jan ;
Schultz, Andrew .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2016, 46 (05) :1405-1446
[49]   On the distribution of Galois groups [J].
Malle, G .
JOURNAL OF NUMBER THEORY, 2002, 92 (02) :315-329
[50]   Galois groups as quotients of Polish groups [J].
Krupinski, Krzysztof ;
Rzepecki, Tomasz .
JOURNAL OF MATHEMATICAL LOGIC, 2020, 20 (03)