Irreducibility and Galois groups of truncated binomial polynomials

被引:0
作者
Laishram, Shanta [1 ]
Yadav, Prabhakar [1 ]
机构
[1] Indian Stat Inst, Stat & Math Unit, New Delhi 110016, India
关键词
Truncated binomial polynomials; irreducibility; Galois groups; primes; valuations; Newton polygons; squares;
D O I
10.1142/S1793042124500817
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For positive integers n >= m, let P-n,P-m(x) :=& sum;(m )(j=0)((n) (j)) x(j) = ((n) (0)) + ((n) (1))x + & mldr; + ((n) (m))x(m) be the truncated binomial expansion of (1 + x)(n) consisting of all terms of degree <= m. It is conjectured that for n > m + 1, the polynomial P-n,P-m(x) is irreducible. We confirm this conjecture when 2m <= n < (m + 1)(10). Also we show for any r >= 10 and 2m <= n < (m + 1)(r+1), the polynomial P-n,P-m(x) is irreducible when m >= max{10(6), 2r(3)}. Under the explicit abc-conjecture, for a fixed m, we give an explicit n(0), n(1) depending only on m such that for all n >= n(0), the polynomial P-n,P-m(x) is irreducible. Further for all n >= n(1), the Galois group associated to P-n,P-m(x) is the symmetric group S-m.
引用
收藏
页码:1663 / 1680
页数:18
相关论文
共 50 条
[31]   Computing Galois groups of polynomials (especially over function fields of prime characteristic) [J].
Sutherland, Nicole .
JOURNAL OF SYMBOLIC COMPUTATION, 2015, 71 :73-97
[32]   Galois groups of random integer polynomials and van der Waerden's Conjecture [J].
Bhargava, Manjul .
ANNALS OF MATHEMATICS, 2025, 201 (02) :339-377
[33]   Irreducibility of the zero polynomials of Eisenstein series [J].
Gonzalez, Oscar E. .
ARCHIV DER MATHEMATIK, 2022, 119 (04) :351-358
[34]   Irreducibility of the zero polynomials of Eisenstein series [J].
Oscar E. González .
Archiv der Mathematik, 2022, 119 :351-358
[35]   On an irreducibility criterion of Perron for multivariate polynomials [J].
Bonciocat, Nicolae Ciprian .
BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2010, 53 (03) :213-217
[36]   Irreducibility of random polynomials: general measures [J].
Bary-Soroker, Lior ;
Koukoulopoulos, Dimitris ;
Kozma, Gady .
INVENTIONES MATHEMATICAE, 2023, 233 (03) :1041-1120
[37]   Classification and irreducibility of a class of integer polynomials [J].
Chen, Yizhi ;
Zhao, Xiangui ;
Zhou, Xuan .
OPEN MATHEMATICS, 2025, 23 (01)
[38]   Irreducibility of generalized Laguerre polynomials Ln(1/2+u) (x) with integer u [J].
Laishram, Shanta ;
Nair, Saranya G. ;
Shorey, T. N. .
JOURNAL OF NUMBER THEORY, 2016, 160 :76-107
[39]   Extension of Irreducibility results on Generalised Laguerre Polynomials Ln(-n-s-1)(x) [J].
Jindal, Ankita ;
Nair, Saranya g. ;
Shorey, Tarlok n. .
PUBLICATIONES MATHEMATICAE DEBRECEN, 2024, 105 (3-4) :473-494
[40]   On the Galois group of lacunary polynomials [J].
Amoroso, Francesco ;
David, Sinnou .
RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2022, 13 (01) :19-29