Irreducibility and Galois groups of truncated binomial polynomials

被引:0
作者
Laishram, Shanta [1 ]
Yadav, Prabhakar [1 ]
机构
[1] Indian Stat Inst, Stat & Math Unit, New Delhi 110016, India
关键词
Truncated binomial polynomials; irreducibility; Galois groups; primes; valuations; Newton polygons; squares;
D O I
10.1142/S1793042124500817
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For positive integers n >= m, let P-n,P-m(x) :=& sum;(m )(j=0)((n) (j)) x(j) = ((n) (0)) + ((n) (1))x + & mldr; + ((n) (m))x(m) be the truncated binomial expansion of (1 + x)(n) consisting of all terms of degree <= m. It is conjectured that for n > m + 1, the polynomial P-n,P-m(x) is irreducible. We confirm this conjecture when 2m <= n < (m + 1)(10). Also we show for any r >= 10 and 2m <= n < (m + 1)(r+1), the polynomial P-n,P-m(x) is irreducible when m >= max{10(6), 2r(3)}. Under the explicit abc-conjecture, for a fixed m, we give an explicit n(0), n(1) depending only on m such that for all n >= n(0), the polynomial P-n,P-m(x) is irreducible. Further for all n >= n(1), the Galois group associated to P-n,P-m(x) is the symmetric group S-m.
引用
收藏
页码:1663 / 1680
页数:18
相关论文
共 50 条
  • [21] Galois groups of random polynomials over the rational function field
    Entin, Alexei
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2025, 111 (01):
  • [22] Galois groups of some iterated polynomials over cyclotomic extensions
    Wade Hindes
    [J]. Archiv der Mathematik, 2018, 110 : 109 - 113
  • [23] Galois groups of some iterated polynomials over cyclotomic extensions
    Hindes, Wade
    [J]. ARCHIV DER MATHEMATIK, 2018, 110 (02) : 109 - 113
  • [24] RAMIFICATION POLYGONS, SPLITTING FIELDS, AND GALOIS GROUPS OF EISENSTEIN POLYNOMIALS
    Greve, Christian
    Pauli, Sebastian
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (06) : 1401 - 1424
  • [25] IRREDUCIBILITY OF GENERALIZED HERMITE-LAGUERRE POLYNOMIALS
    Laishram, Shanta
    Shorey, Tarlok N.
    [J]. FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2012, 47 (01) : 51 - 64
  • [26] Irreducibility criteria for skew polynomials
    Churchill, Richard C.
    Zhang, Yang
    [J]. JOURNAL OF ALGEBRA, 2009, 322 (11) : 3797 - 3822
  • [27] Zeros and irreducibility of Stern polynomials
    Dilcher, Karl
    Kidwai, Mohammad
    Tomkins, Hayley
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2017, 90 (3-4): : 407 - 433
  • [28] Irreducibility of polynomials with a large gap
    Sawin, Will
    Shusterman, Mark
    Stoll, Michael
    [J]. ACTA ARITHMETICA, 2020, 192 (02) : 111 - 139
  • [29] GALOIS-GROUPS AND FACTORING POLYNOMIALS OVER FINITE-FIELDS
    RONYAI, L
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 1992, 5 (03) : 345 - 365
  • [30] The irreducibility of some Wronskian Hermite polynomials
    Grosu, Codrut
    Grosu, Corina
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2021, 32 (02): : 456 - 497