Model-Based Reinforcement Learning for Cavity Filter Tuning

被引:0
|
作者
Nimara, Doumitrou Daniil [1 ]
Malek-Mohammadi, Mohammadreza [2 ]
Wei, Jieqiang [1 ]
Huang, Vincent [1 ]
Ogren, Petter [3 ]
机构
[1] Ericsson GAIA, Stockholm, Sweden
[2] Qualcomm, San Diego, CA USA
[3] KTH, Div Robot Percept & Learning, Stockholm, Sweden
来源
LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 211 | 2023年 / 211卷
关键词
Reinforcement Learning; Model Based Reinforcement Learning; Telecommunication;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The ongoing development of telecommunication systems like 5G has led to an increase in demand of well calibrated base transceiver station (BTS) components. A pivotal component of every BTS is cavity filters, which provide a sharp frequency characteristic to select a particular band of interest and reject the rest. Unfortunately, their characteristics in combination with manufacturing tolerances make them difficult for mass production and often lead to costly manual post-production fine tuning. To address this, numerous approaches have been proposed to automate the tuning process. One particularly promising one, that has emerged in the past few years, is to use model free reinforcement learning (MFRL); however, the agents are not sample efficient. This poses a serious bottleneck, as utilising complex simulators or training with real filters is prohibitively time demanding. This work advocates for the usage of model based reinforcement learning (MBRL) and showcases how its utilisation can significantly decrease sample complexity, while maintaining similar levels of success rate. More specifically, we propose an improvement over a state-of-the-art (SoTA) MBRL algorithm, namely the Dreamer algorithm. This improvement can serve as a template for applications in other similar, high-dimensional non-image data problems. We carry experiments on two complex filter types, and show that our novel modification on the Dreamer architecture reduces sample complexity by a factor of 4 and 10, respectively. Our findings pioneer the usage of MBRL which paves the way for utilising more precise and accurate simulators which was previously prohibitively time demanding.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A survey on model-based reinforcement learning
    Luo, Fan-Ming
    Xu, Tian
    Lai, Hang
    Chen, Xiong-Hui
    Zhang, Weinan
    Yu, Yang
    SCIENCE CHINA-INFORMATION SCIENCES, 2024, 67 (02)
  • [2] Model-Based Reinforcement Learning in Robotics: A Survey
    Sun S.
    Lan X.
    Zhang H.
    Zheng N.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2022, 35 (01): : 1 - 16
  • [3] Model gradient: unified model and policy learning in model-based reinforcement learning
    Jia, Chengxing
    Zhang, Fuxiang
    Xu, Tian
    Pang, Jing-Cheng
    Zhang, Zongzhang
    Yu, Yang
    FRONTIERS OF COMPUTER SCIENCE, 2024, 18 (04)
  • [4] Model gradient: unified model and policy learning in model-based reinforcement learning
    Chengxing Jia
    Fuxiang Zhang
    Tian Xu
    Jing-Cheng Pang
    Zongzhang Zhang
    Yang Yu
    Frontiers of Computer Science, 2024, 18
  • [5] Model-based reinforcement learning with model error and its application
    Tajima, Yoshiyuki
    Onisawa, Takehisa
    PROCEEDINGS OF SICE ANNUAL CONFERENCE, VOLS 1-8, 2007, : 1333 - 1336
  • [6] Learnable Weighting Mechanism in Model-based Reinforcement Learning
    Huang W.-Z.
    Yin Q.-Y.
    Zhang J.-G.
    Huang K.-Q.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (06): : 2765 - 2775
  • [7] Offline Model-Based Reinforcement Learning for Tokamak Control
    Char, Ian
    Abbate, Joseph
    Bardoczi, Laszlo
    Boyer, Mark D.
    Chung, Youngseog
    Conlin, Rory
    Erickson, Keith
    Mehta, Viraj
    Richner, Nathan
    Kolemen, Egemen
    Schneider, Jeff
    LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 211, 2023, 211
  • [8] Incremental model-based reinforcement learning with model constraint
    Yang, Zhiyou
    Fu, Mingsheng
    Qu, Hong
    Li, Fan
    Shi, Shuqing
    Hu, Wang
    NEURAL NETWORKS, 2025, 185
  • [9] Model-based average reward reinforcement learning
    Tadepalli, P
    Ok, D
    ARTIFICIAL INTELLIGENCE, 1998, 100 (1-2) : 177 - 224
  • [10] Model-Based Reinforcement Learning With Isolated Imaginations
    Pan, Minting
    Zhu, Xiangming
    Zheng, Yitao
    Wang, Yunbo
    Yang, Xiaokang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (05) : 2788 - 2803