Multi-UAVs Strategies for Ad Hoc Network with Multi-Agent Reinforcement Learning

被引:1
作者
Karimata, George [1 ]
Nakazato, Jin [1 ]
Tran, Gia Khanh [2 ]
Suto, Katsuya [3 ]
Tsukada, Manabu [1 ]
Esaki, Hiroshi [1 ]
机构
[1] Univ Tokyo, Tokyo, Japan
[2] Tokyo Inst Technol, Tokyo, Japan
[3] Univ Electrocommun, Chofu, Tokyo, Japan
来源
38TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING, ICOIN 2024 | 2024年
关键词
UAV; flying ad hoc network; multi-agent reinforcement learning; multi-agent transformer;
D O I
10.1109/ICOIN59985.2024.10572031
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, extensive research has focused on leveraging advanced technologies beyond 5G and for Industry 5.0 to promote sustainability and prosperity in society. Our study advances this effort by seeking to create an aerial perspective using Unmanned Aerial Vehicles (UAVs). This paper introduces a method for optimizing UAV deployment strategies using multiagent reinforcement learning, facilitating the formation of a flying ad hoc network. The results demonstrate practical cooperation among UAVs in flight.
引用
收藏
页码:726 / 729
页数:4
相关论文
共 12 条
  • [1] Evolution of Non-Terrestrial Networks From 5G to 6G: A Survey
    Azari, M. Mahdi
    Solanki, Sourabh
    Chatzinotas, Symeon
    Kodheli, Oltjon
    Sallouha, Hazem
    Colpaert, Achiel
    Montoya, Jesus Fabian Mendoza
    Pollin, Sofie
    Haqiqatnejad, Alireza
    Mostaani, Arsham
    Lagunas, Eva
    Ottersten, Bjorn
    [J]. IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2022, 24 (04): : 2633 - 2672
  • [2] Multi-UAV Path Planning for Wireless Data Harvesting With Deep Reinforcement Learning
    Bayerlein, Harald
    Theile, Mirco
    Caccamo, Marco
    Gesbert, David
    [J]. IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2021, 2 : 1171 - 1187
  • [3] github, US
  • [4] Inokuchi K., 2023, P 2023 IEEE INT C ME, DOI [10.1109/MetaCom57706.2023.00049, DOI 10.1109/METACOM57706.2023.00049]
  • [5] Building Digital Twins of Cyber Physical Systems With Metaverse for Industry 5.0 and Beyond
    Jagatheesaperumal, Senthil Kumar
    Rahouti, Mohamed
    [J]. IT PROFESSIONAL, 2022, 24 (06) : 34 - 40
  • [6] Kuba Jakub Grudzien, 2021, arXiv
  • [7] Formation Control Algorithm of Multi-UAV-Based Network Infrastructure
    Park, Seongjoon
    Kim, Kangho
    Kim, Hyunsoon
    Kim, Hwangnam
    [J]. APPLIED SCIENCES-BASEL, 2018, 8 (10):
  • [8] Schulman J, 2017, Arxiv, DOI [arXiv:1707.06347, 10.48550/arXiv.1707.06347]
  • [9] Tran G. K., 2022, NFV/SDN as an Enabler for Dynamic Placement Method of mmwave Embedded UAV Access Base Stations
  • [10] Vaswani A, 2017, ADV NEUR IN, V30