Hydrolase-Catalyzed Depolymerization Mechanism toward Crystalline and Amorphous Polyethylene Terephthalate

被引:1
作者
Zheng, Mingna [1 ]
Li, Yanwei [1 ]
Dong, Weiliang [2 ]
Zhang, Qingzhu [1 ]
Wang, Wenxing [1 ]
机构
[1] Shandong Univ, Environm Res Inst, Qingdao 266237, Peoples R China
[2] Nanjing Tech Univ, Coll Biotechnol & Pharmaceut Engn, Nanjing 211800, Peoples R China
来源
ACS SUSTAINABLE CHEMISTRY & ENGINEERING | 2024年 / 12卷 / 27期
基金
中国国家自然科学基金;
关键词
polyethylene terephthalate; biodepolymerization; crystalline region; conformational selection; enzymeengineering; DISTORTION-INTERACTION ANALYSIS; POLY(ETHYLENE-TEREPHTHALATE); DEGRADATION; REACTIVITY; PLASTICS; DESIGN; CHARMM;
D O I
10.1021/acssuschemeng.4c02986
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Enzyme-based recycling of the extensively utilized polyethylene terephthalate (PET) is considered as a promising eco-friendly strategy to manage PET waste. Although efficient depolymerization of amorphous PET has been achieved, highly efficient depolymerization of the well-ordered crystalline region of PET presents a huge challenge. Herein, leveraged to molecular dynamics simulations and quantum mechanics/molecular mechanics calculations, we study the depolymerization mechanism of IsPETase toward both crystalline and amorphous PET to unravel the origin of the efficient depolymerization of the amorphous region. We demonstrated that crystalline PET is not well accommodated within the active pocket, and significant distortion energy is needed during its depolymerization. Poor stabilization within the oxyanion hole for crystalline PET was identified and confirmed to lead to higher energy barriers. In addition, after identifying the rate-determining step, we reveal that IsPETase prefers to depolymerize trans than gauche conformation of the PET polymer with a 2.4 kcal mol(-1) lower energy barrier. Differences in structural/charge distributions within the active site of the enzyme between trans and gauche conformations were proposed to be responsible for this preference. The structure-charge-activity relationship for the rate-determining step was built. Our results will aid the rational engineering of PETases with high depolymerization efficiency toward the crystalline region of PET for fighting the challenges of industrial applications.
引用
收藏
页码:10252 / 10259
页数:8
相关论文
共 48 条
  • [1] Inside PEF: Chain Conformation and Dynamics in Crystalline and Amorphous Domains
    Araujo, Catarina F.
    Nolasco, Mariela M.
    Ribeiro-Claro, Paulo J. A.
    Rudic, Svemir
    Silvestre, Armando J. D.
    Vaz, Pedro D.
    Sousa, Andreia F.
    [J]. MACROMOLECULES, 2018, 51 (09) : 3515 - 3526
  • [2] Assessment of Four Engineered PET Degrading Enzymes Considering Large-Scale Industrial Applications
    Arnal, Gregory
    Anglade, Julien
    Gavalda, Sabine
    Tournier, Vincent
    Chabot, Nicolas
    Bornscheuer, Uwe T.
    Weber, Gert
    Marty, Alain
    [J]. ACS CATALYSIS, 2023, 13 (20) : 13156 - 13166
  • [3] Characterization and engineering of a plastic-degrading aromatic polyesterase
    Austin, Harry P.
    Allen, Mark D.
    Donohoe, Bryon S.
    Rorrer, Nicholas A.
    Kearns, Fiona L.
    Silveira, Rodrigo L.
    Pollard, Benjamin C.
    Dominick, Graham
    Duman, Ramona
    El Omari, Kamel
    Mykhaylyk, Vitaliy
    Wagner, Armin
    Michener, William E.
    Amore, Antonella
    Skaf, Munir S.
    Crowley, Michael F.
    Thorne, Alan W.
    Johnson, Christopher W.
    Woodcock, H. Lee
    McGeehan, John E.
    Beckham, Gregg T.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (19) : E4350 - E4357
  • [4] Hybrid models for combined quantum mechanical and molecular mechanical approaches
    Bakowies, D
    Thiel, W
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (25) : 10580 - 10594
  • [5] Directed evolution of an efficient and thermostable PET depolymerase
    Bell, Elizabeth L.
    Smithson, Ross
    Kilbride, Siobhan
    Foster, Jake
    Hardy, Florence J.
    Ramachandran, Saranarayanan
    Tedstone, Aleksander A.
    Haigh, Sarah J.
    Garforth, Arthur A.
    Day, Philip J. R.
    Levy, Colin
    Shaver, Michael P.
    Green, Anthony P.
    [J]. NATURE CATALYSIS, 2022, 5 (08) : 673 - +
  • [6] CHARMM: The Biomolecular Simulation Program
    Brooks, B. R.
    Brooks, C. L., III
    Mackerell, A. D., Jr.
    Nilsson, L.
    Petrella, R. J.
    Roux, B.
    Won, Y.
    Archontis, G.
    Bartels, C.
    Boresch, S.
    Caflisch, A.
    Caves, L.
    Cui, Q.
    Dinner, A. R.
    Feig, M.
    Fischer, S.
    Gao, J.
    Hodoscek, M.
    Im, W.
    Kuczera, K.
    Lazaridis, T.
    Ma, J.
    Ovchinnikov, V.
    Paci, E.
    Pastor, R. W.
    Post, C. B.
    Pu, J. Z.
    Schaefer, M.
    Tidor, B.
    Venable, R. M.
    Woodcock, H. L.
    Wu, X.
    Yang, W.
    York, D. M.
    Karplus, M.
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (10) : 1545 - 1614
  • [7] CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS
    BROOKS, BR
    BRUCCOLERI, RE
    OLAFSON, BD
    STATES, DJ
    SWAMINATHAN, S
    KARPLUS, M
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) : 187 - 217
  • [8] Cutinase: Characteristics, preparation, and application
    Chen, Sheng
    Su, Lingqia
    Chen, Jian
    Wu, Jing
    [J]. BIOTECHNOLOGY ADVANCES, 2013, 31 (08) : 1754 - 1767
  • [9] Biodegradation of highly crystallized poly(ethylene terephthalate) through cell surface codisplay of bacterial PETase and hydrophobin
    Chen, Zhuozhi
    Duan, Rongdi
    Xiao, Yunjie
    Wei, Yi
    Zhang, Hanxiao
    Sun, Xinzhao
    Wang, Shen
    Cheng, Yingying
    Wang, Xue
    Tong, Shanwei
    Yao, Yunxiao
    Zhu, Cheng
    Yang, Haitao
    Wang, Yanyan
    Wang, Zefang
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [10] Rational Design of Chemical Catalysis for Plastic Recycling
    Chu, Mingyu
    Liu, Yu
    Lou, Xiangxi
    Zhang, Qiao
    Chen, Jinxing
    [J]. ACS CATALYSIS, 2022, 12 (08): : 4659 - 4679