Implicit residual approximation for multi-sensor data fusion in surface geometry measurement

被引:0
|
作者
Chen, Gengxiang [1 ,2 ]
Li, Yingguang [1 ]
Mehdi-Souzani, Charyar [2 ]
Liu, Xu [3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mech & Elect Engn, Nanjing 210016, Peoples R China
[2] Univ Sorbonne Paris Nord, Univ Paris Saclay, ENS Pars Saclay, LURPA, F-91190 Gif Sur Yvette, France
[3] Nanjing Tech Univ, Sch Mech & Power Engn, Nanjing 211816, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Surface measurement; Data fusion; Multi-sensor; Quality control; MODEL;
D O I
10.1016/j.jmsy.2024.05.019
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Multi -sensor measurement of complex products provides the opportunity for real-time digitising of the product geometry, thus becoming an enabling technology for the digital twin establishment of the manufacturing process. Data fusion of multi -sensor measurement results could improve the accuracy and efficiency of measurement because of the complementary characteristics of different sensors. The classical multi -sensor fusion method, Residual -approximation (RA) has been developed and demonstrated to be an effective solution in fusing heterogeneous point clouds. However, existing RA -based methods rely on the explicit z -direction residual function, which is inapplicable for complex surfaces with varying normals or implicit functions that widely exist in the modern manufacturing industry. Therefore, this research proposes an Implicit Residual Approximation (IRA) method that can represent the residual between different data sets implicitly as subresidual models. By constructing local clusters of measurement data, the complex residual function in the original space can be conveniently represented by the Gaussian mixture of the estimated sub -residual models. Both the simulation case and real measurement experiments are carried out to show the effectiveness of the proposed method. The experimental results demonstrate the superior performance of the proposed compared to the existing RA -based in both residual modelling and data fusion.
引用
收藏
页码:246 / 256
页数:11
相关论文
共 50 条
  • [1] Multi-sensor Data Fusion for Measurement of Complex Freeform Surfaces
    Ren, M. J.
    Liu, M. Y.
    Cheung, C. F.
    Yin, Y. H.
    SEVENTH INTERNATIONAL SYMPOSIUM ON PRECISION MECHANICAL MEASUREMENTS, 2016, 9903
  • [2] Multi-sensor data fusion approach in series measurement
    Zheng Ying-wen
    Proceedings of 2005 Chinese Control and Decision Conference, Vols 1 and 2, 2005, : 1462 - +
  • [3] A Method for the Measurement of Ship Attitude Based on Multi-sensor Data Fusion
    Qu Feng-de
    Wang Feng-wu
    Li Jiang
    Tian Guan-jun
    2015 NINTH INTERNATIONAL CONFERENCE ON FRONTIER OF COMPUTER SCIENCE AND TECHNOLOGY FCST 2015, 2015, : 196 - 199
  • [4] Multi-sensor data fusion for accurate surface modeling
    Mahesh K. Singh
    Ashish Dutta
    K. S. Venkatesh
    Soft Computing, 2020, 24 : 14449 - 14462
  • [5] Multi-sensor data fusion for accurate surface modeling
    Sing, Mahesh K.
    Dutta, Ashish
    Venkatesh, K. S.
    SOFT COMPUTING, 2020, 24 (19) : 14449 - 14462
  • [6] Rapid and Precise Reverse Engineering of Complex Geometry Through Multi-Sensor Data Fusion
    Yu, Zhiqiang
    Wang, Taiyong
    Wang, Peng
    Tian, Ying
    Li, Hongbin
    IEEE ACCESS, 2019, 7 : 165793 - 165813
  • [7] The Research of Multi-sensor Data Fusion Technology
    Jiao, Wen-cheng
    Han, Shuai
    Cui, Pei-zhang
    Wang, Xin
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTER SCIENCE (AICS 2016), 2016, : 294 - 299
  • [8] Research on multi-sensor data fusion technique
    Wang Hongliang
    Ma Zhigang
    ISTM/2007: 7TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-7, CONFERENCE PROCEEDINGS, 2007, : 3480 - 3483
  • [9] A Method for the Temperature Measurement of PCR Instrument Based on Multi-sensor Data Fusion
    Fang, Rongrui
    Xue, Shenghu
    Ye, Zihong
    Yu, Xiaoping
    MATERIAL SCIENCE AND ENGINEERING TECHNOLOGY, 2012, 462 : 624 - 630
  • [10] Multi-sensor Data Fusion for Improved Measurement Accuracy in Injection Molding
    Fan, Zhaoyan
    Gao, Robert X.
    Wang, Peng
    Kazmer, David O.
    2016 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE PROCEEDINGS, 2016, : 786 - 790