A stacked deep multi-kernel learning framework for blast induced flyrock prediction

被引:2
|
作者
Zhang, Ruixuan [1 ]
Li, Yuefeng [2 ]
Gui, Yilin [1 ,3 ,4 ]
Armaghani, Danial Jahed [5 ]
Yari, Mojtaba [6 ]
机构
[1] Queensland Univ Technol, Sch Civil & Environm Engn, Gardens Point, Qld 4000, Australia
[2] Queensland Univ Technol, Sch Comp Sci, Gardens Point, Qld 4000, Australia
[3] Queensland Univ Technol, Ctr Mat Sci, Gardens Point, Qld 4000, Australia
[4] Queensland Univ Technol, Ctr Sustainable Engn Construction Mat, Gardens Point, Qld 4000, Australia
[5] Univ Technol Sydney, Sch Civil & Environm Engn, Ultimo, NSW 2007, Australia
[6] Malayer Univ, Fac Engn, Dept Min Engn, Malayer 6571995863, Iran
关键词
Deep learning; Stacked-representation learning; Multi -kernel learning; Multi -feature fusion; Gradient boosting; Flyrock prediction; SUPPORT VECTOR MACHINE; GROUND VIBRATION; MODEL; OPTIMIZATION; PARAMETERS; ALGORITHMS; DISTANCE;
D O I
10.1016/j.ijrmms.2024.105741
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Blasting operations are widely and frequently used for rock excavation in Civil and Mining constructions. Flyrock is one of the most important issues induced by blasting operations in open pit mines, and therefore needs to be well predicted in order to identify the safety zone to prevent the potential injuries. For this purpose, 234 sets of blasting data were collected from Sungun Copper Mine site, and a stacked deep multi -kernel learning (SD-MKL) framework was proposed to estimate the blast induced flyrock with confidence accuracy. The proposed model uses the stacking-based representation learning framework (S-RL) to achieve deep learning on small-scale training sets. A multi -kernel learning model (MKL) is used as the base module of S-RL framework, which uses a multi -feature fusion strategy to generate multiple kernels with different kernel length in order to reduce the effort in tuning hyperparameters. In addition, this study further enhanced the predictive capability of SD-MKL by introducing the boosting method into the S-RL framework and hence proposed a boosted SD-MKL model. For comparison purpose, several existing machine learning models were implemented, i.e., kernel ridge regression (KRR), support vector machine (SVM), random forest (RF), gradient boosting decision tree (GBDT), ensemble deep random vector functional link (edRVFL), SD-KRR and SD-SVM. Our experimental results showed that the proposed boosted SD-MKL achieved the best overall performance, with the lowest RMSE of 0.21/1.73, MAE of 0.08/0.78, and the highest VAF of 99.98/99.24.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Adaptive Weighted Multi-kernel Learning for Blast-Induced Flyrock Distance Prediction
    Zhang, Ruixuan
    Li, Yuefeng
    Gui, Yilin
    Armaghani, Danial Jahed
    Yari, Mojtaba
    ROCK MECHANICS AND ROCK ENGINEERING, 2025, 58 (01) : 679 - 695
  • [2] Multi-Kernel Learning for Heterogeneous Data
    Liao, Chunlan
    Peng, Shili
    IEEE ACCESS, 2025, 13 : 45340 - 45349
  • [3] Prediction of blast-induced flyrock using differential evolution algorithm
    Dehghani, Hesam
    Shafaghi, Mehdi
    ENGINEERING WITH COMPUTERS, 2017, 33 (01) : 149 - 158
  • [4] Advanced Machine Learning Methods for Prediction of Blast-Induced Flyrock Using Hybrid SVR Methods
    Zhou, Ji
    Lu, Yijun
    Tian, Qiong
    Liu, Haichuan
    Hasanipanah, Mahdi
    Huang, Jiandong
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 140 (02): : 1595 - 1617
  • [5] A Deep Feature based Multi-kernel Learning Approach for Video Emotion Recognition
    Li, Wei
    Abtahi, Farnaz
    Zhu, Zhigang
    ICMI'15: PROCEEDINGS OF THE 2015 ACM INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, 2015, : 482 - 489
  • [6] Deep architecture using multi-kernel learning and multi- classifier methods
    Rebai, Ilyes
    BenAyed, Yassine
    Mandi, Walid
    2015 IEEE/ACS 12TH INTERNATIONAL CONFERENCE OF COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2015,
  • [7] Chaotic time series prediction based on multi-kernel learning support vector regression
    Zhang Jun-Feng
    Hu Shou-Song
    ACTA PHYSICA SINICA, 2008, 57 (05) : 2708 - 2713
  • [8] Prediction of flyrock induced by mine blasting using a novel kernel-based extreme learning machine
    Jamei, Mehdi
    Hasanipanah, Mahdi
    Karbasi, Masoud
    Ahmadianfar, Iman
    Taherifar, Somaye
    JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2021, 13 (06) : 1438 - 1451
  • [9] Lithofacies identification using support vector machine based on local deep multi-kernel learning
    Liu, Xing-Ye
    Zhou, Lin
    Chen, Xiao-Hong
    Li, Jing-Ye
    PETROLEUM SCIENCE, 2020, 17 (04) : 954 - 966
  • [10] Dimensionality reduction based multi-kernel framework for drug-target interaction prediction
    Mahmud, S. M. Hasan
    Chen, Wenyu
    Jahan, Hosney
    Liu, Yougsheng
    Hasan, S. M. Mamun
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2021, 212