On the Statistical Consistency of Risk-Sensitive Bayesian Decision-Making

被引:0
|
作者
Jaiswal, Prateek [1 ]
Honnappa, Harsha [2 ]
Rao, Vinayak A. [3 ]
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[2] Purdue Univ, Sch Ind Engn, W Lafayette, IN 47906 USA
[3] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023) | 2023年
基金
美国国家科学基金会;
关键词
OPERATIONAL STATISTICS; OPTIMIZATION; RATES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study data-driven decision-making problems in the Bayesian framework, where the expectation in the Bayes risk is replaced by a risk-sensitive entropic risk measure with respect to the posterior distribution. We focus on problems where calculating the posterior distribution is intractable, a typical situation in modern applications with large datasets and complex data generating models. We leverage a dual representation of the entropic risk measure to introduce a novel risk-sensitive variational Bayesian (RSVB) framework for jointly computing a risk-sensitive posterior approximation and the corresponding decision rule. Our general framework includes loss-calibrated VB [16] as a special case. We also study the impact of these computational approximations on the predictive performance of the inferred decision rules. We compute the convergence rates of the RSVB approximate posterior and the corresponding optimal value. We illustrate our theoretical findings in parametric and nonparametric settings with the help of three examples.
引用
收藏
页数:43
相关论文
共 50 条
  • [41] A decision-making framework for process plant maintenance
    Ghosh, Devarun
    Roy, Sandip
    EUROPEAN JOURNAL OF INDUSTRIAL ENGINEERING, 2010, 4 (01) : 78 - 98
  • [42] A ROBUST INFERENCE METHOD FOR DECISION-MAKING IN NETWORKS
    Schecter, Aaron
    Nohadani, Omid
    Contractor, Noshir
    MIS QUARTERLY, 2022, 46 (02) : 713 - 738
  • [43] A decision-making framework for adaptive pain management
    Lin, Ching-Feng
    LeBoulluec, Aera Kim
    Zeng, Li
    Chen, Victoria C. P.
    Gatchel, Robert J.
    HEALTH CARE MANAGEMENT SCIENCE, 2014, 17 (03) : 270 - 283
  • [44] Framework for rational decision-making in bridge maintenance
    Liljefors, Frida
    Koehler, Jochen
    STRUCTURE AND INFRASTRUCTURE ENGINEERING, 2024,
  • [45] Resilience, Decision-making, and Environmental Water Releases
    Chu, Long
    Grafton, R. Quentin
    Stewardson, Michael
    EARTHS FUTURE, 2018, 6 (06): : 777 - 792
  • [46] Distributed Decision-Making Over Adaptive Networks
    Tu, Sheng-Yuan
    Sayed, Ali H.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (05) : 1054 - 1069
  • [47] Support to Decision-Making in a Network of Industrial Evaporators
    Kalliski, Marc
    Luis Pitarch, Jose
    Jasch, Christian
    de Prada, Cesar
    REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2019, 16 (01): : 26 - 35
  • [48] Optimal Rules of Dichotomous Group Decision-making
    Li, Wu
    PROCEEDINGS OF 2009 CONFERENCE ON SYSTEMS SCIENCE, MANAGEMENT SCIENCE & SYSTEM DYNAMICS, VOL 4, 2009, : 1 - 5
  • [49] Decision-making in waste management: scenarios evaluation
    Berg, Dmitry B.
    Manzhurov, Igor L.
    Antonov, Konstantin L.
    Taubayev, Ayapbergen
    Turygina, Victoria F.
    IFAC PAPERSONLINE, 2018, 51 (32): : 125 - 129
  • [50] Parallelisation of decision-making techniques in aquaculture enterprises
    Ibanez, Mario
    Luna, Manuel
    Bosque, Jose Luis
    Beivide, Ramon
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (11): : 11827 - 11843