2-rainbow domination number of the subdivision of graphs

被引:0
|
作者
Salkhori, Rostam Yarke [1 ]
Vatandoost, Ebrahim [1 ]
Behtoei, Ali [1 ]
机构
[1] Imam Khomeini Int Univ, Fac Sci, Dept Math, POB 34148-96818, Qazvin, Iran
关键词
2-Rainbow domination number; subdivision; bipartite graph; tree; RAINBOW DOMINATION; ROMAN DOMINATION;
D O I
10.22049/cco.2024.28850.1749
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple graph and f : V (G) -> P ({1, 2}) be a function where for each vertex v is an element of V (G) with f(v) = & empty; we have Uu is an element of NG(v) f(u) = {1, 2}. Then f is a 2-rainbow dominating function (a 2RDF) of G. The weight of f is omega(f) = v is an element of V (G) |f(v)|. The minimum weight among all of 2-rainbow dominating functions is 2-rainbow domination number and is denoted by gamma r2(G). In this paper, we provide some bounds for the 2-rainbow domination number of the subdivision graph S(G) of a graph G. Also, among some other interesting results, we determine the exact value of gamma r2(S(G)) when G is a tree, a bipartite graph, Kr,s, Kn1,n2,...,nk and Kn.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Relating the total {2}-domination number with the total domination number of graphs
    Villamar, I. Rios
    Cabrera-Martinez, A.
    Sanchez, J. L.
    Sigarreta, J. M.
    DISCRETE APPLIED MATHEMATICS, 2023, 333 : 90 - 95
  • [32] Independent Rainbow Domination of Graphs
    Zehui Shao
    Zepeng Li
    Aljoša Peperko
    Jiafu Wan
    Janez Žerovnik
    Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 417 - 435
  • [33] Independent Rainbow Domination of Graphs
    Shao, Zehui
    Li, Zepeng
    Peperko, Aljosa
    Wan, Jiafu
    Zerovnik, Janez
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (02) : 417 - 435
  • [34] Further results on outer independent 2-rainbow dominating functions of graphs
    Samadi, Babak
    Soltankhah, Nasrin
    RAIRO-OPERATIONS RESEARCH, 2023, 57 (04) : 1983 - 1993
  • [35] On the Roman domination subdivision number of a graph
    J. Amjadi
    R. Khoeilar
    M. Chellali
    Z. Shao
    Journal of Combinatorial Optimization, 2020, 40 : 501 - 511
  • [36] A characterization of trees based on independent domination subdivision number
    Sharada, B.
    Soner, N. D.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2010, 80A : 289 - 294
  • [37] Game domination subdivision number of a graph
    Favaron, O.
    Karami, H.
    Sheikholeslami, S. M.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2015, 30 (01) : 109 - 119
  • [38] Coronas and Domination Subdivision Number of a Graph
    Dettlaff, M.
    Lemanska, M.
    Topp, J.
    Zylinski, P.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (04) : 1717 - 1724
  • [39] Game domination subdivision number of a graph
    O. Favaron
    H. Karami
    S. M. Sheikholeslami
    Journal of Combinatorial Optimization, 2015, 30 : 109 - 119
  • [40] Coronas and Domination Subdivision Number of a Graph
    M. Dettlaff
    M. Lemańska
    J. Topp
    P. Żyliński
    Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 1717 - 1724