2-rainbow domination number of the subdivision of graphs

被引:0
|
作者
Salkhori, Rostam Yarke [1 ]
Vatandoost, Ebrahim [1 ]
Behtoei, Ali [1 ]
机构
[1] Imam Khomeini Int Univ, Fac Sci, Dept Math, POB 34148-96818, Qazvin, Iran
关键词
2-Rainbow domination number; subdivision; bipartite graph; tree; RAINBOW DOMINATION; ROMAN DOMINATION;
D O I
10.22049/cco.2024.28850.1749
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple graph and f : V (G) -> P ({1, 2}) be a function where for each vertex v is an element of V (G) with f(v) = & empty; we have Uu is an element of NG(v) f(u) = {1, 2}. Then f is a 2-rainbow dominating function (a 2RDF) of G. The weight of f is omega(f) = v is an element of V (G) |f(v)|. The minimum weight among all of 2-rainbow dominating functions is 2-rainbow domination number and is denoted by gamma r2(G). In this paper, we provide some bounds for the 2-rainbow domination number of the subdivision graph S(G) of a graph G. Also, among some other interesting results, we determine the exact value of gamma r2(S(G)) when G is a tree, a bipartite graph, Kr,s, Kn1,n2,...,nk and Kn.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] RELATING 2-RAINBOW DOMINATION TO ROMAN DOMINATION
    Alvarado, Jose D.
    Dantas, Simone
    Rautenbach, Dieter
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (04) : 953 - 961
  • [22] A tight upper bound for 2-rainbow domination in generalized Petersen graphs
    Wang, Yue-Li
    Wu, Kuo-Hua
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (13-14) : 2178 - 2188
  • [23] TOTAL 2-RAINBOW DOMINATION NUMBERS OF TREES
    Ahangar, H. Abdollahzadeh
    Amjadi, J.
    Chellali, M.
    Nazari-Moghaddam, S.
    Sheikholeslami, S. M.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (02) : 345 - 364
  • [24] Complexity of 2-Rainbow Total Domination Problem
    Sumenjak, Tadeja Kraner
    Tepeh, Aleksandra
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (05)
  • [25] Bounds on weak roman and 2-rainbow domination numbers
    Chellali, Mustapha
    Haynes, Teresa W.
    Hedetniemi, Stephen T.
    DISCRETE APPLIED MATHEMATICS, 2014, 178 : 27 - 32
  • [26] Changing and Unchanging 2-Rainbow Independent Domination
    Shi, Xiaolong
    Wu, Pu
    Shao, Zehui
    Samodivkin, Vladimir
    Sheikholeslami, Seyed Mahmoud
    Soroudi, M.
    Wang, Shaohui
    IEEE ACCESS, 2019, 7 : 72604 - 72612
  • [27] 2-Rainbow Domination of Circulant Graphs C(n;{1,2,. . . ,k})
    Fu, Xue-liang
    Wu, Xiao-feng
    Dong, Gai-fang
    Li, Hong-hui
    Guo, William
    2015 INTERNATIONAL CONFERENCE ON SOFTWARE, MULTIMEDIA AND COMMUNICATION ENGINEERING (SMCE 2015), 2015, : 135 - 142
  • [28] Trees with Equal Total Domination and 2-Rainbow Domination Numbers
    Shao, Zehui
    Sheikholeslami, Seyed Mahmoud
    Wang, Bo
    Wu, Pu
    Zhang, Xiaosong
    FILOMAT, 2018, 32 (02) : 599 - 607
  • [29] Disjunctive Total Domination Subdivision Number of Graphs
    Ciftci, Canan
    Aytac, Vecdi
    FUNDAMENTA INFORMATICAE, 2020, 174 (01) : 15 - 26
  • [30] 2-Rainbow Domination of the Circulant Graph C(n;{1,3})
    Fu, Xueliang
    Wu, Xiaofeng
    Dong, Gaifang
    Li, Honghui
    Guo, William
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON TEST, MEASUREMENT AND COMPUTATIONAL METHODS (TMCM 2015), 2015, 26 : 123 - 129