Local Interpretations for Explainable Natural Language Processing: A Survey

被引:8
作者
Luo, Siwen [1 ]
Ivison, Hamish [2 ]
Han, Soyeon Caren [3 ]
Poon, Josiah [4 ]
机构
[1] Univ Western Australia, 35 Stirling Hwy, Perth, WA 6009, Australia
[2] Univ Washington, 3800 E Stevens Way NE, Seattle, WA 98195 USA
[3] Univ Melbourne, 700 Swanston St, Melbourne, Vic 3010, Australia
[4] Univ Sydney, 1 Cleveland St, Darlington, NSW 2008, Australia
关键词
Deep neural networks; explainable AI; local interpretation; natural language processing; PREDICTION;
D O I
10.1145/3649450
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
As the use of deep learning techniques has grown across various fields over the past decade, complaints about the opaqueness of the black-box models have increased, resulting in an increased focus on transparency in deep learning models. This work investigates various methods to improve the interpretability of deep neural networks for Natural Language Processing (NLP) tasks, including machine translation and sentiment analysis. We provide a comprehensive discussion on the definition of the term interpretability and its various aspects at the beginning of this work. The methods collected and summarised in this survey are only associated with local interpretation and are specifically divided into three categories: (1) interpreting the model's predictions through related input features; (2) interpreting through natural language explanation; (3) probing the hidden states of models and word representations.
引用
收藏
页数:36
相关论文
共 50 条
  • [41] Natural Language Mapping of Electrocardiogram Interpretations to a Standardized Ontology
    Epstein, Richard H.
    Jean, Yuel-Kai
    Dudaryk, Roman
    Freundlich, Robert E.
    Walco, Jeremy P.
    Mueller, Dorothee A.
    Banks, Shawn E.
    METHODS OF INFORMATION IN MEDICINE, 2021, 60 (03/04) : 104 - 109
  • [42] Shortcut Learning Explanations for Deep Natural Language Processing: A Survey on Dataset Biases
    Dogra, Varun
    Verma, Sahil
    Kavita
    Wozniak, Marcin
    Shafi, Jana
    Ijaz, Muhammad Fazal
    IEEE ACCESS, 2024, 12 : 26183 - 26195
  • [43] Survey on Latest Advances in Natural Language Processing Applications of Generative Adversarial Networks
    Koc, Canan
    Ozyurt, Fatih
    Iantovics, Lazsla Barna
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2025, 15 (01)
  • [44] Natural Language Processing and Language Technologies for the Basque Language
    Gonzalez-Dios, Itziar
    Altuna, Begona
    CUADERNOS EUROPEOS DE DEUSTO, 2022, : 203 - 230
  • [45] Attention in Natural Language Processing
    Galassi, Andrea
    Lippi, Marco
    Torroni, Paolo
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (10) : 4291 - 4308
  • [46] Natural language processing and diagrams
    Dodds, D
    IC-AI '04 & MLMTA'04 , VOL 1 AND 2, PROCEEDINGS, 2004, : 1044 - 1050
  • [47] Natural Language Processing in Nephrology
    Vleck, Tielman T. Van
    Farrell, Douglas
    Chan, Lili
    ADVANCES IN CHRONIC KIDNEY DISEASE, 2022, 29 (05) : 465 - 471
  • [48] Natural language processing as human language engineering
    Di Felippo, Ariani
    Dias-da-Silva, Bento Carlos
    CALIDOSCOPIO, 2009, 7 (03): : 183 - 191
  • [49] Natural language processing for automated detection of incidental durotomy
    Karhade, Aditya, V
    Bongers, Michiel E. R.
    Groot, Olivier Q.
    Kazarian, Erick R.
    Cha, Thomas D.
    Fogel, Harold A.
    Hershman, Stuart H.
    Tobert, Daniel G.
    Schoenfeld, Andrew J.
    Bono, Christopher M.
    Kang, James D.
    Harris, Mitchel B.
    Schwab, Joseph H.
    SPINE JOURNAL, 2020, 20 (05) : 695 - 700
  • [50] Natural Language Processing of Nursing Notes An Integrative Review
    Mitha, Shazia
    Schwartz, Jessica
    Hobensack, Mollie
    Cato, Kenrick
    Woo, Kyungmi
    Smaldone, Arlene
    Topaz, Maxim
    CIN-COMPUTERS INFORMATICS NURSING, 2023, 41 (06) : 377 - 384