Local Interpretations for Explainable Natural Language Processing: A Survey

被引:8
|
作者
Luo, Siwen [1 ]
Ivison, Hamish [2 ]
Han, Soyeon Caren [3 ]
Poon, Josiah [4 ]
机构
[1] Univ Western Australia, 35 Stirling Hwy, Perth, WA 6009, Australia
[2] Univ Washington, 3800 E Stevens Way NE, Seattle, WA 98195 USA
[3] Univ Melbourne, 700 Swanston St, Melbourne, Vic 3010, Australia
[4] Univ Sydney, 1 Cleveland St, Darlington, NSW 2008, Australia
关键词
Deep neural networks; explainable AI; local interpretation; natural language processing; PREDICTION;
D O I
10.1145/3649450
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
As the use of deep learning techniques has grown across various fields over the past decade, complaints about the opaqueness of the black-box models have increased, resulting in an increased focus on transparency in deep learning models. This work investigates various methods to improve the interpretability of deep neural networks for Natural Language Processing (NLP) tasks, including machine translation and sentiment analysis. We provide a comprehensive discussion on the definition of the term interpretability and its various aspects at the beginning of this work. The methods collected and summarised in this survey are only associated with local interpretation and are specifically divided into three categories: (1) interpreting the model's predictions through related input features; (2) interpreting through natural language explanation; (3) probing the hidden states of models and word representations.
引用
收藏
页数:36
相关论文
共 50 条
  • [1] Natural language processing in finance: A survey
    Du, Kelvin
    Zhao, Yazhi
    Mao, Rui
    Xing, Frank
    Cambria, Erik
    INFORMATION FUSION, 2025, 115
  • [2] Explainable natural language processing with matrix product states
    Tangpanitanon, Jirawat
    Mangkang, Chanatip
    Bhadola, Pradeep
    Minato, Yuichiro
    Angelakis, Dimitris G.
    Chotibut, Thiparat
    NEW JOURNAL OF PHYSICS, 2022, 24 (05):
  • [3] Natural Language Processing for Dialects of a Language: A Survey
    Joshi, Aditya
    Dabre, Raj
    Kanojia, Diptesh
    Li, Zhuang
    Zhan, Haolan
    Haffari, Gholamreza
    Dippold, Doris
    ACM COMPUTING SURVEYS, 2025, 57 (06)
  • [4] XNLP: A Living Survey for XAI Research in Natural Language Processing
    Qian, Kun
    Danilevsky, Marina
    Katsis, Yannis
    Kawas, Ban
    Oduor, Erick
    Popa, Lucian
    Li, Yunyao
    26TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES (IUI '21 COMPANION), 2021, : 78 - 80
  • [5] Natural language processing in the patent domain: a survey
    Jiang, Lekang
    Goetz, Stephan M.
    Artificial Intelligence Review, 2025, 58 (07)
  • [6] Quantum Natural Language Processing: A Comprehensive Survey
    Varmantchaonala, Charles M.
    Fendji, Jean Louis K. E.
    Schoning, Julius
    Atemkeng, Marcellin
    IEEE ACCESS, 2024, 12 : 99578 - 99598
  • [7] Neural natural language processing for long texts: A survey on classification and summarization
    Tsirmpas, Dimitrios
    Gkionis, Ioannis
    Papadopoulos, Georgios Th.
    Mademlis, Ioannis
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [8] A Survey on Natural Language Processing for Fake News Detection
    Oshikawa, Ray
    Qian, Jing
    Wang, William Yang
    PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2020), 2020, : 6086 - 6093
  • [9] A Natural Language Processing Survey on Legislative and Greek Documents
    Krasadakis, Panteleimon
    Sakkopoulos, Evangelos
    Verykios, Vassilios S.
    25TH PAN-HELLENIC CONFERENCE ON INFORMATICS WITH INTERNATIONAL PARTICIPATION (PCI2021), 2021, : 407 - 412
  • [10] Survey on Spell Checker for Tamil Language Using Natural Language Processing
    Selvaraj, P. A.
    Jagadeesan, M.
    Harikrishnan, M.
    Vijayapriya, R.
    Jayasudha, K.
    JOURNAL OF PHARMACEUTICAL NEGATIVE RESULTS, 2022, 13 : 170 - 174