Out-of-distribution detection for SAR imagery using ATR systems

被引:0
|
作者
Hill, Charles [1 ]
机构
[1] Etegent Technol, 2601 Mission Point Blvd STE 220, Beavercreek, OH 45431 USA
来源
ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XXXI | 2024年 / 13032卷
关键词
out-of-distribution detection; anomaly detection; synthetic aperture radar; model trust; open set recognition; artificial intelligence; machine learning;
D O I
10.1117/12.3013850
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A typical assumption for deploying machine learning models is that the model training and inference data were drawn from the same distribution. However, this assumption rarely holds true for systems deployed in the open world. Inference data can drift over time for numerous reasons, such as changes in operating conditions, adversarial modifications to targets, or sensor degradation. Despite these changes, deep learning models are especially vulnerable to issuing over-confident predictions on out-of-distribution data. This work seeks to address this issue by proposing a framework for describing out-of-distribution detection pipelines, proposing an out-of-distribution detection algorithm using Gaussian Mixture Models which is well suited for SAR ATR, and by evaluating multiple pipelines which exploit the intermediate states of ATR model deep neural networks. This work studies candidate pipelines with varied amounts of dimensionality reduction and detection algorithms on the SAMPLE+ dataset challenge problems for clutter and confuser rejection. Despite the exclusion of out-of-distribution samples from pipeline training, the presented results demonstrate that these samples can nonetheless be reliably detected, exceeding baseline performance by more than 10 percentage points.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Image Dataset Quality Assessment Through Descriptive Out-of-Distribution Detection
    Kharma, Sarni
    Grossmann, Juergen
    KI 2024: ADVANCES IN ARTIFICIAL INTELLIGENCE, KI 2024, 2024, 14992 : 147 - 159
  • [42] Out-of-Distribution Detection of Human Activity Recognition with Smartwatch Inertial Sensors
    Boyer, Philip
    Burns, David
    Whyne, Cari
    SENSORS, 2021, 21 (05) : 1 - 23
  • [43] An Efficient Anomalous Action Recognition Model Based on Out-of-Distribution Detection
    Yu, Pei-Lun
    Chou, Po-Yung
    Lin, Cheng-Hung
    Kao, Wen-Chung
    IEEE ISPCE-ASIA 2021: IEEE INTERNATIONAL SYMPOSIUM ON PRODUCT COMPLIANCE ENGINEERING - ASIA, 2021,
  • [44] Redesigning Out-of-Distribution Detection on 3D Medical Images
    Vasiliuk, Anton
    Frolova, Daria
    Belyaev, Mikhail
    Shirokikh, Boris
    UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, UNSURE 2023, 2023, 14291 : 126 - 135
  • [45] An Efficient Anomalous Action Recognition Model Based on Out-of-Distribution Detection
    Yu, Pei-Lun
    Chou, Po-Yung
    Lin, Cheng-Hung
    Kao, Wen-Chung
    IEEE ISPCE-ASIA 2021: IEEE INTERNATIONAL SYMPOSIUM ON PRODUCT COMPLIANCE ENGINEERING - ASIA, 2021,
  • [46] Investigation of out-of-distribution detection across various models and training methodologies
    Kim, Byung Chun
    Kim, Byungro
    Hyun, Yoonsuk
    NEURAL NETWORKS, 2024, 175
  • [47] From Global to Local: Multi-Scale Out-of-Distribution Detection
    Zhang, Ji
    Gao, Lianli
    Hao, Bingguang
    Huang, Hao
    Song, Jingkuan
    Shen, Hengtao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 6115 - 6128
  • [48] WOOD: Wasserstein-Based Out-of-Distribution Detection
    Wang, Yinan
    Sun, Wenbo
    Jin, Jionghua
    Kong, Zhenyu
    Yue, Xiaowei
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (02) : 944 - 956
  • [49] Are We Ready for Out-of-Distribution Detection in Digital Pathology?
    Oh, Ji-Hun
    Falahkheirkhah, Kianoush
    Bhargava, Rohit
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT X, 2024, 15010 : 78 - 89
  • [50] Intra-Class Mixup for Out-of-Distribution Detection
    Ravikumar, Deepak
    Kodge, Sangamesh
    Garg, Isha
    Roy, Kaushik
    IEEE ACCESS, 2023, 11 : 25968 - 25981