Out-of-distribution detection for SAR imagery using ATR systems

被引:0
|
作者
Hill, Charles [1 ]
机构
[1] Etegent Technol, 2601 Mission Point Blvd STE 220, Beavercreek, OH 45431 USA
来源
ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XXXI | 2024年 / 13032卷
关键词
out-of-distribution detection; anomaly detection; synthetic aperture radar; model trust; open set recognition; artificial intelligence; machine learning;
D O I
10.1117/12.3013850
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A typical assumption for deploying machine learning models is that the model training and inference data were drawn from the same distribution. However, this assumption rarely holds true for systems deployed in the open world. Inference data can drift over time for numerous reasons, such as changes in operating conditions, adversarial modifications to targets, or sensor degradation. Despite these changes, deep learning models are especially vulnerable to issuing over-confident predictions on out-of-distribution data. This work seeks to address this issue by proposing a framework for describing out-of-distribution detection pipelines, proposing an out-of-distribution detection algorithm using Gaussian Mixture Models which is well suited for SAR ATR, and by evaluating multiple pipelines which exploit the intermediate states of ATR model deep neural networks. This work studies candidate pipelines with varied amounts of dimensionality reduction and detection algorithms on the SAMPLE+ dataset challenge problems for clutter and confuser rejection. Despite the exclusion of out-of-distribution samples from pipeline training, the presented results demonstrate that these samples can nonetheless be reliably detected, exceeding baseline performance by more than 10 percentage points.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Out-of-Distribution Detection for Reliable Face Recognition
    Yu, Chang
    Zhu, Xiangyu
    Lei, Zhen
    Li, Stan Z.
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 710 - 714
  • [32] Research on Image Out-of-Distribution Detection: A Review
    Guo L.
    Li G.
    Gong K.
    Xue Z.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2023, 36 (07): : 613 - 633
  • [33] Out-of-Distribution Detection with Virtual Outlier Smoothing
    Nie, Jun
    Luo, Yadan
    Ye, Shanshan
    Zhang, Yonggang
    Tian, Xinmei
    Fang, Zhen
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2025, 133 (02) : 724 - 741
  • [34] Rule-Based Out-of-Distribution Detection
    De Bernardi G.
    Narteni S.
    Cambiaso E.
    Mongelli M.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (06): : 2627 - 2637
  • [35] Full-Spectrum Out-of-Distribution Detection
    Yang, Jingkang
    Zhou, Kaiyang
    Liu, Ziwei
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (10) : 2607 - 2622
  • [36] DICE: Leveraging Sparsification for Out-of-Distribution Detection
    Sun, Yiyou
    Li, Yixuan
    COMPUTER VISION, ECCV 2022, PT XXIV, 2022, 13684 : 691 - 708
  • [37] Gradient-Regularized Out-of-Distribution Detection
    Sharifi, Sina
    Entesari, Taha
    Safaei, Bardia
    Patel, Vishal M.
    Fazlyab, Mahyar
    COMPUTER VISION - ECCV 2024, PT XIII, 2025, 15071 : 459 - 478
  • [38] Full-Spectrum Out-of-Distribution Detection
    Jingkang Yang
    Kaiyang Zhou
    Ziwei Liu
    International Journal of Computer Vision, 2023, 131 : 2607 - 2622
  • [39] Out-of-Distribution Detection Using an Ensemble of Self Supervised Leave-Out Classifiers
    Vyas, Apoorv
    Jammalamadaka, Nataraj
    Zhu, Xia
    Das, Dipankar
    Kaul, Bharat
    Willke, Theodore L.
    COMPUTER VISION - ECCV 2018, PT VIII, 2018, 11212 : 560 - 574
  • [40] Out-of-distribution detection with in-distribution voting using the medical example of chest x-ray classification
    Wollek, Alessandro
    Willem, Theresa
    Ingrisch, Michael
    Sabel, Bastian
    Lasser, Tobias
    MEDICAL PHYSICS, 2024, 51 (04) : 2721 - 2732