Coupled CFD-DEM Simulations for Modelling Non-Spherical Particles

被引:0
|
作者
Kiran, M. S. [1 ]
Dutta, Rabijit [2 ]
Ranjan, Pritanshu [1 ]
机构
[1] BITS Pilani, Dept Mech Engn, K K Birla Goa Campus, Pilani, India
[2] Virginia Commonwealth Univ, Dept Mech & Nucl Engn, Richmond, VA USA
关键词
discrete element modeling; non-spherical particles; CFD-DEM coupling; turbulence modeling;
D O I
10.18178/ijmerr.11.9.698-704
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In the present work, single -spouted fluidized bed with non -spherical particle geometries was studied using Computational Fluid Dynamics - Discrete Element Modeling (CFD-DEM) coupling technique. CFD-DEM is an effective tool for modeling multi -phase flows in industrial applications such as fluidized bed reactors, spouted bed etc. Most DEM force -displacement models are based on particles with spherical geometry while many particles encountered in nature of non -spherical geometry. Three different shapes: Cylinder, Square and Hexagon were considered and the results are matched with the circular shaped particles. Multi -sphere method is used to model the force -displacement behavior. Open source software LIGGGHTS-DEM and OpenFOAM were used to perform the simulations. It was observed that the complex interactions of the multi -sphere particles give rise to greater instability in the fluidizing bed, as seen in strong fluctuations in particle properties. Also, these particles exhibited a tendency to agglomerate, thereby offering stronger resistance to shearing flows. As per the findings, it was concluded that the particle geometry has a significant influence on the performance of the fluidizing bed; failure to accurately represent an actual particle would result in erroneous results.
引用
收藏
页码:698 / 704
页数:7
相关论文
共 50 条
  • [1] Drag Model for Coupled CFD-DEM Simulations of Non-spherical Particles
    Lohse, Rolf
    Palzer, Ulrich
    OPENFOAM(R), 2019, : 121 - 131
  • [2] CFD-DEM modelling of the infiltration of non-spherical slurry particles in granular soils
    Liu, Jiayuan
    Hanley, Kevin J.
    COMPUTERS AND GEOTECHNICS, 2023, 164
  • [3] Viscosity prediction for dense suspensions of non-spherical particles based on CFD-DEM simulations
    Sourek, Martin Kotouc
    Studenik, Ondrej
    Isoz, Martin
    Koci, Petr
    York, Andrew P. E.
    POWDER TECHNOLOGY, 2024, 444
  • [4] CFD-DEM analysis of the spouted fluidized bed with non-spherical particles
    Esgandari, Behrad
    Golshan, Shahab
    Zarghami, Reza
    Sotudeh-Gharebagh, Rahmat
    Chaouki, Jamal
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2021, 99 (11): : 2303 - 2319
  • [5] CFD-DEM modeling of breakage of non-spherical particles in fluidized beds
    Aali, Hamed
    Kazemi, Saman
    Larijani, Roxana Saghafian
    Zarghami, Reza
    Mostoufi, Navid
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2023, 189 : 593 - 605
  • [6] A review of recent development for the CFD-DEM investigations of non-spherical particles
    Ma, Huaqing
    Zhou, Lianyong
    Liu, Zihan
    Chen, Mengyao
    Xia, Xiuhao
    Zhao, Yongzhi
    POWDER TECHNOLOGY, 2022, 412
  • [7] DEM/CFD-DEM Modelling of Non-spherical Particulate Systems: Theoretical Developments and Applications
    Zhong, Wenqi
    Yu, Aibing
    Liu, Xuejiao
    Tong, Zhenbo
    Zhang, Hao
    POWDER TECHNOLOGY, 2016, 302 : 108 - 152
  • [8] Study of the hydraulic transport of non-spherical particles in a pipeline based on the CFD-DEM
    Chen, Qianyi
    Xiong, Ting
    Zhang, Xinzhuo
    Jiang, Pan
    ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2020, 14 (01) : 53 - 69
  • [9] CFD-DEM Model for Simulation of Non-spherical Particles in Hole Cleaning Process
    Akhshik, Siamak
    Behzad, Mehdi
    Rajabi, Majid
    PARTICULATE SCIENCE AND TECHNOLOGY, 2015, 33 (05) : 472 - 481
  • [10] An extended unresolved CFD-DEM coupling method for simulation of fluid and non-spherical particles
    He, Liping
    Liu, Zhengxian
    Zhao, Yongzhi
    PARTICUOLOGY, 2022, 68 : 1 - 12