Classifying Melanoma in ISIC Dermoscopic Images Using Efficient Convolutional Neural Networks and Deep Transfer Learning

被引:0
作者
Mahmoud, Habeba [1 ]
Omer, Osama A. [1 ]
Ragab, Shimaa [1 ]
Esmaiel, Hamada [1 ,2 ]
Abdel-Nasser, Mohamed [1 ]
机构
[1] Aswan Univ, Aswan Fac Engn, Dept Elect Engn, Aswan 81542, Egypt
[2] A Sharqiyah Univ, Dept Elect & Commun Engn, Coll Engn, POB 42, Ibra 400, Oman
关键词
skin cancer; image classification; precise Computer-Aided Diagnosis (CAD); deep learning; Convolutional Neural Network (CNN); dermoscopic images; MALIGNANT-MELANOMA; CLASSIFICATION;
D O I
10.18280/ts.410211
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Melanoma, recognized as the most life-threatening form of skin cancer, poses a significant threat to life expectancy. The timely identification of melanoma plays a crucial role in mitigating the morbidity and mortality associated with skin cancer. Dermoscopic images, acquired through advanced dermoscopic tools, serve as vital resources for the early detection of skin cancer. Hence, there is an urgent need to develop a reliable and accurate Computer-Aided Diagnosis (CAD) system capable of autonomously discerning skin cancer. This study focuses on the meticulous construction of diverse skin cancer classification models, specifically employing various Convolutional Neural Network (CNN) architectures configured across four distinct layer arrangements. Additionally, a transfer learning approach is explored, leveraging robust pre-trained deep CNN models extensively trained on the comprehensive ISIC dermoscopic image dataset, known for its diversity in skin lesions. Utilizing the ISIC dataset as the foundation of our analysis, the CNN model's performance is systematically evaluated with varying numbers of layers-ranging from 15 to 27. Results indicate that the CNN model comprising 15 layers achieves an accuracy of 89.55%, while the model with 27 layers exhibits the highest performance, attaining an accuracy of 90.85%. In the realm of transfer learning, ten baseline CNN models pre-trained on ImageNet are employed. All baseline models demonstrate accuracies surpassing 80%, with SqueezeNet recording the lowest accuracy at 80.89%. In contrast, the ResNet-50 model consistently outperforms other models in transfer learning, achieving an accuracy of 92.98%. These findings underscore the efficacy of the proposed models in melanoma classification and highlight the superior performance of the ResNet-50 model in the context of transfer learning.
引用
收藏
页码:679 / 691
页数:13
相关论文
共 50 条
  • [31] Classifying functional nuclear images with convolutional neural networks: a survey
    Lin, Qiang
    Man, Zhengxing
    Cao, Yongchun
    Deng, Tao
    Han, Chengcheng
    Cao, Chuangui
    Zhang, Linjun
    Zeng, Sitao
    Gao, Ruiting
    Wang, Weilan
    Ji, Jinshui
    Huang, Xiaodi
    [J]. IET IMAGE PROCESSING, 2020, 14 (14) : 3300 - 3313
  • [32] Automated Deep Learning Based Melanoma Detection and Classification Using Biomedical Dermoscopic Images
    Albraikan, Amani Abdulrahman
    Nemri, Nadhem
    Alkhonaini, Mimouna Abdullah
    Hilal, Anwer Mustafa
    Yaseen, Ishfaq
    Motwakel, Abdelwahed
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (02): : 2443 - 2459
  • [33] Non-invasive detection of anemia using lip mucosa images transfer learning convolutional neural networks
    Mansour, Mohammed
    Donmez, Turker Berk
    Kutlu, Mustafa
    Mahmud, Shekhar
    [J]. FRONTIERS IN BIG DATA, 2023, 6
  • [34] Semantic segmentation of slums in satellite images using transfer learning on fully convolutional neural networks
    Wurm, Michael
    Stark, Thomas
    Zhu, Xiao Xiang
    Weigand, Matthias
    Taubenboeck, Hannes
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 150 : 59 - 69
  • [35] A Deep Learning-Based Model for Melanoma Detection in Both Dermoscopic and Digital Images
    Roy, Shudipto Sekhar
    Kardan, Ramtin
    Neubert, Jeremiah
    [J]. 2024 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY, EIT 2024, 2024, : 668 - 673
  • [36] Deep Transfer Learning for Bearing Fault Diagnosis using CWT Time–Frequency Images and Convolutional Neural Networks
    Said Djaballah
    Kamel Meftah
    Khaled Khelil
    Mounir Sayadi
    [J]. Journal of Failure Analysis and Prevention, 2023, 23 : 1046 - 1058
  • [37] Detection of pneumonia using convolutional neural networks and deep learning
    Szepesi, Patrik
    Szilagyi, Laszlo
    [J]. BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2022, 42 (03) : 1012 - 1022
  • [38] Measles Rash Identification Using Transfer Learning and Deep Convolutional Neural Networks
    Glock, Kimberly
    Napier, Charlie
    Gary, Todd
    Gupta, Vibhuti
    Gigante, Joseph
    Schaffner, William
    Wang, Qingguo
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 3905 - 3910
  • [39] Efficient deep convolutional neural networks using CReLU for ATR with limited SAR images
    Wang, Zelong
    Xu, Xianghui
    [J]. JOURNAL OF ENGINEERING-JOE, 2019, 2019 (21): : 7615 - 7618
  • [40] Melanoma Classification from Dermoscopy Images Using Ensemble of Convolutional Neural Networks
    Raza, Rehan
    Zulfiqar, Fatima
    Tariq, Shehroz
    Anwar, Gull Bano
    Sargano, Allah Bux
    Habib, Zulfiqar
    [J]. MATHEMATICS, 2022, 10 (01)