Neural networks in closed-loop systems: Verification using interval arithmetic and formal prover

被引:1
作者
Rossi, Federico [1 ]
Bernardeschi, Cinzia [1 ]
Cococcioni, Marco [1 ]
机构
[1] Univ Pisa, Dept Informat Engn, Via G Caruso 16, I-56127 Pisa, PI, Italy
关键词
Cyber-physical systems; Neural networks; Closed-loop control systems; Formal verification; Interval arithmetic;
D O I
10.1016/j.engappai.2024.109238
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Machine Learning approaches have been successfully used for the creation of high-performance control components of cyber-physical systems, where the control dynamics result from the combination of many subsystems. However, these approaches may lack the trustworthiness required to guarantee their reliable application in a safety-critical context. In this paper, we propose a combination of interval arithmetic and theorem-proving verification techniques to analyze safety properties in closed-loop systems that embed neural network components. We show the application of the proposed approach to a model-predictive controller for autonomous driving comparing the neural network verification performance with other existing tools. The results show that open-loop neural network verification through interval arithmetic can outperform existing approaches proving properties with a smaller time overhead. Furthermore, we demonstrate the capability of combining the two approaches to construct a formal model of the network in higher-order logic of the controlled system in a closed-loop.
引用
收藏
页数:11
相关论文
共 51 条
[1]  
Agarap A. F., 2018, arXiv, DOI DOI 10.48550/ARXIV.1803.08375
[2]   Formalizing Piecewise Affine Activation Functions of Neural Networks in COQ [J].
Aleksandrov, Andrei ;
Voellinger, Kim .
NASA FORMAL METHODS, NFM 2023, 2023, 13903 :62-78
[3]  
Althoff M., 2015, PROC WORKSHOP APPL V, P120
[4]  
Alur R, 2015, PRINCIPLES OF CYBER-PHYSICAL SYSTEMS, P1
[5]  
Alur R., 2011, 2011 International Conference on Embedded Software (EMSOFT 2011), P273
[6]   PyTorch 2: Faster Machine Learning Through Dynamic Python']Python Bytecode Transformation and Graph Compilation [J].
Ansel, Jason ;
Yang, Edward ;
He, Horace ;
Gimelshein, Natalia ;
Jain, Animesh ;
Voznesensky, Michael ;
Bao, Bin ;
Bell, Peter ;
Berard, David ;
Burovski, Evgeni ;
Chauhan, Geeta ;
Chourdia, Anjali ;
Constable, Will ;
Desmaison, Alban ;
DeVito, Zachary ;
Ellison, Elias ;
Feng, Will ;
Gong, Jiong ;
Gschwind, Michael ;
Hirsh, Brian ;
Huang, Sherlock ;
Kalambarkar, Kshiteej ;
Kirsch, Laurent ;
Lazos, Michael ;
Lezcano, Mario ;
Liang, Yanbo ;
Liang, Jason ;
Lu, Yinghai ;
Luk, C. K. ;
Maher, Bert ;
Pan, Yunjie ;
Puhrsch, Christian ;
Reso, Matthias ;
Saroufim, Mark ;
Siraichi, Marcos Yukio ;
Suk, Helen ;
Suo, Michael ;
Tillet, Phil ;
Wang, Eikan ;
Wang, Xiaodong ;
Wen, William ;
Zhang, Shunting ;
Zhao, Xu ;
Zhou, Keren ;
Zou, Richard ;
Mathews, Ajit ;
Chanan, Gregory ;
Wu, Peng ;
Chintala, Soumith .
PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS, ASPLOS 2024, VOL 2, 2024, :929-947
[7]  
Antsaklis P J, 1990, IEEE Trans Neural Netw, V1, P242, DOI 10.1109/72.80237
[8]   Neural Network Compression of ACAS Xu Early Prototype Is Unsafe: Closed-Loop Verification Through Quantized State Backreachability [J].
Bak, Stanley ;
Hoang-Dung Tran .
NASA FORMAL METHODS (NFM 2022), 2022, 13260 :280-298
[9]   nnenum: Verification of ReLU Neural Networks with Optimized Abstraction Refinement [J].
Bak, Stanley .
NASA FORMAL METHODS (NFM 2021), 2021, 12673 :19-36
[10]  
Bernardeschi C., 2023, 4 INT C EL COMM COMP, P1, DOI [10.1109/ICECCE61019.2023.10442825, DOI 10.1109/ICECCE61019.2023.10442825]