Cross-domain Recommendation via Dual Adversarial Adaptation

被引:3
|
作者
Su, Hongzu [1 ]
Li, Jingjing [1 ]
Du, Zhekai [1 ]
Zhu, Lei [2 ]
Lu, Ke [1 ]
Shen, Heng Tao [1 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu, Peoples R China
[2] Tongji Univ, Sch Elect & Informat Engn, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Adversarial domain adaptation; cross-domain recommendation;
D O I
10.1145/3632524
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data scarcity is a perpetual challenge of recommendation systems, and researchers have proposed a variety of cross-domain recommendation methods to alleviate the problem of data scarcity in target domains. However, in many real-world cross-domain recommendation systems, the source domain and the target domain are sampled from different data distributions, which obstructs the cross-domain knowledge transfer. In this article, we propose to specifically align the data distributions between the source domain and the target domain to alleviate imbalanced sample distribution and thus challenge the data scarcity issue in the target domain. Technically, our proposed approach builds a dual adversarial adaptation (DAA) framework to adversarially train the target model together with a pre-trained source model. Two domain discriminators play the two-player minmax game with the target model and guide the target model to learn reliable domain-invariant features that can be transferred across domains. At the same time, the target model is calibrated to learn domain-specific information of the target domain. In addition, we formulate our approach as a plug-and-play module to boost existing recommendation systems. We apply the proposed method to address the issues of insufficient data and imbalanced sample distribution in real-world Click-through Rate/Conversion Rate predictions on two large-scale industrial datasets. We evaluate the proposed method in scenarios with and without overlapping users/items, and extensive experiments verify that the proposed method is able to significantly improve the prediction performance on the target domain. For instance, our method can boost PLE with a performance improvement of 15.4% in terms of Area Under Curve compared with single-domain PLE on our private game dataset. In addition, our method is able to surpass single-domain MMoE by 6.85% on the public datasets. Code: https://github.com/TL-UESTC/DAA.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Mitigating Negative Transfer in Cross-Domain Recommendation via Knowledge Transferability Enhancement
    Song, Zijian
    Zhang, Wenhan
    Deng, Lifang
    Zhang, Jiandong
    Wu, Zhihua
    Bian, Kaigui
    Cui, Bin
    PROCEEDINGS OF THE 30TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2024, 2024, : 2745 - 2754
  • [42] Debiasing Learning based Cross-domain Recommendation
    Li, Siqing
    Yao, Liuyi
    Mu, Shanlei
    Zhao, Wayne Xin
    Li, Yaliang
    Guo, Tonglei
    Ding, Bolin
    Wen, Ji-Rong
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 3190 - 3199
  • [43] Disentangled Representations for Cross-Domain Recommendation via Heterogeneous Graph Contrastive Learning
    Liu, Xinyue
    Li, Bohan
    Chen, Yijun
    Li, Xiaoxue
    Xu, Shuai
    Yin, Hongzhi
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2024, PT 3, 2025, 14852 : 35 - 50
  • [44] FedDCSR: Federated Cross-domain Sequential Recommendation via Disentangled Representation Learning
    Zhang, Hongyu
    Zheng, Dongyi
    Yang, Xu
    Feng, Jiyuan
    Liao, Qing
    PROCEEDINGS OF THE 2024 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2024, : 535 - 543
  • [45] Cross-Domain Recommendation Via User-Clustering and Multidimensional Information Fusion
    Nie, Jie
    Zhao, Zian
    Huang, Lei
    Nie, Weizhi
    Wei, Zhiqiang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 868 - 880
  • [46] DDGHM: Dual Dynamic Graph with Hybrid Metric Training for Cross-Domain Sequential Recommendation
    Zheng, Xiaolin
    Su, Jiajie
    Liu, Weiming
    Chen, Chaochao
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022,
  • [47] Domain-Invariant Task Optimization for Cross-domain Recommendation
    Liu, Dou
    Hao, Qingbo
    Xiao, Yingyuan
    Zheng, Wenguang
    Wang, Jinsong
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT III, 2024, 14449 : 488 - 499
  • [48] Domain-Oriented Knowledge Transfer for Cross-Domain Recommendation
    Zhao, Guoshuai
    Zhang, Xiaolong
    Tang, Hao
    Shen, Jialie
    Qian, Xueming
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9539 - 9550
  • [49] Transfer Learning via Contextual Invariants for One-to-Many Cross-Domain Recommendation
    Krishnan, Adit
    Das, Mahashweta
    Bendre, Mangesh
    Yang, Hao
    Sundaram, Hari
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 1081 - 1090
  • [50] Personalized Transfer of User Preferences for Cross-domain Recommendation
    Zhu, Yongchun
    Tang, Zhenwei
    Liu, Yudan
    Zhuang, Fuzhen
    Xie, Ruobing
    Zhang, Xu
    Lin, Leyu
    He, Qing
    WSDM'22: PROCEEDINGS OF THE FIFTEENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2022, : 1507 - 1515