Machine Learning Algorithm for Epileptic Seizure Prediction from Scalp EEG Records

被引:0
作者
Aviles, Esteban [1 ]
Britto, Frank [1 ]
Villaseca, David [1 ]
Zegarra, Carlos [1 ]
Reyes, Francis [1 ]
机构
[1] Univ Peruana Cayetano Heredia, Biomed Engn Program, Lima, Peru
来源
INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS 2022, ICBHI 2022 | 2024年 / 108卷
关键词
EEG; Epilepsy; Seizures; Random Forest; XGBoost; SVM; KNN; Machine Learning;
D O I
10.1007/978-3-031-59216-4_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Epileptic seizures need to be predicted with sufficient time to allow the patients to prevent clinical symptoms by taking their prescribed anti-epileptic medications or via neurostimulation. In this context, automatic seizure prediction techniques with high sensitivity and specificity are needed. In this work, we present a machine learning method to predict epileptic seizures by analyzing the pre-ictal stage of scalp EEG recordings. The TUH EEG Seizure Corpus files were used to train and test the technique. After filtering and channel normalization, statistical parameters from the Teager energy operator, the absolute band power, the Hjorth parameters, and the kurtosis of the signal were extracted from each channel. Four machine learning classifiers were implemented after a feature selection step based on inter-feature cross-correlation values: Random Forest, XGBoost, Support Vector Machine, and K-nearest neighbors. The XGBoost model yielded the best performance metrics with the validation set: 99.84% in accuracy, 100% in precision, 99.6% in recall, 100% in specificity, and 0.998 in the area under the receiving operating characteristics curve (AUC). Ultimately, these methods can detect subtle changes in scalp EEG records that forecast an epileptic seizure.
引用
收藏
页码:51 / 59
页数:9
相关论文
共 28 条
[1]   Machine learning applications in epilepsy [J].
Abbasi, Bardia ;
Goldenholz, Daniel M. .
EPILEPSIA, 2019, 60 (10) :2037-2047
[2]   EEG Oscillatory Power and Complexity for Epileptic Seizure Detection [J].
Abou-Abbas, Lina ;
Jemal, Imene ;
Henni, Khadidja ;
Ouakrim, Youssef ;
Mitiche, Amar ;
Mezghani, Neila .
APPLIED SCIENCES-BASEL, 2022, 12 (09)
[3]   Automated seizure prediction [J].
Acharya, U. Rajendra ;
Hagiwara, Yuki ;
Adeli, Hojjat .
EPILEPSY & BEHAVIOR, 2018, 88 :251-261
[4]   Understanding Patients' Behavior: Vision-Based Analysis of Seizure Disorders [J].
Ahmedt-Aristizabal, David ;
Denman, Simon ;
Nguyen, Kien ;
Sridharan, Sridha ;
Dionisio, Sasha ;
Fookes, Clinton .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2019, 23 (06) :2583-2591
[5]   High kurtosis of intracranial electroencephalogram as a marker of ictogenicity in pediatric epilepsy surgery [J].
Akiyama, Tomoyuki ;
Osada, Makoto ;
Isowa, Masahide ;
Go, Cristina Y. ;
Ochi, Ayako ;
Elliott, Irene M. ;
Akiyama, Mari ;
Snead, O. Carter, III ;
Rutka, James T. ;
Drake, James M. ;
Otsubo, Hiroshi .
CLINICAL NEUROPHYSIOLOGY, 2012, 123 (01) :93-99
[6]   Towards accurate prediction of epileptic seizures: A review [J].
Assi, Elie Bou ;
Nguyen, Dang K. ;
Rihana, Sandy ;
Sawan, Mohamad .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2017, 34 :144-157
[7]   A review of feature extraction and performance evaluation in epileptic seizure detection using EEG [J].
Boonyakitanont, Poomipat ;
Lek-uthai, Apiwat ;
Chomtho, Krisnachai ;
Songsiri, Jitkomut .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 57
[8]   Understanding the burden of epilepsy in Latin America: A systematic review of its prevalence and incidence [J].
Burneo, JG ;
Tellez-Zenteno, J ;
Wiebe, S .
EPILEPSY RESEARCH, 2005, 66 (1-3) :63-74
[9]   Diagnostic challenges in epilepsy: seizure under-reporting and seizure detection [J].
Elger, Christian E. ;
Hoppe, Christian .
LANCET NEUROLOGY, 2018, 17 (03) :279-288
[10]   Vagus Nerve Stimulation for the Treatment of Epilepsy [J].
Gonzalez, Herman F. J. ;
Yengo-Kahn, Aaron ;
Englot, Dario J. .
NEUROSURGERY CLINICS OF NORTH AMERICA, 2019, 30 (02) :219-+