Safety Augmentation for Volitional Human Locomotion via Lower-Limb Exoskeletons: A Case Study

被引:0
|
作者
Yu, Miao [1 ]
Lin, Qin [2 ]
Lv, Ge [1 ]
机构
[1] Clemson Univ, Dept Mech Engn, Clemson, SC 29634 USA
[2] Univ Houston, Dept Engn Technol, Houston, TX 77004 USA
来源
IEEE CONTROL SYSTEMS LETTERS | 2024年 / 8卷
基金
美国国家科学基金会;
关键词
Safety; Exoskeletons; Legged locomotion; Perturbation methods; Foot; Dynamics; Trajectory; Safety augmentation; exoskeleton; control barrier functions; nonlinear disturbance observer; UNITED-STATES;
D O I
10.1109/LCSYS.2024.3402909
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
User safety is a crucial factor to consider when designing control paradigms for lower-limb exoskeletons. Existing control paradigms mainly focus on providing assistance for human users under stable walking conditions, ignoring situations that human users may lose their balance due to external perturbations during locomotion. In this letter, we propose a safety framework for lower-limb exoskeletons to augment safety for volitional human motion based on Control Barrier Functions. The safety indicators are defined as the human's center of mass and swing foot position lying within self-selected ranges. Instead of enforcing reference trajectories, we incorporate human inputs and preferences in a two-layer quadratic program structure based on Control Barrier Functions to generate assistance for ensuring safety. Simulation results on a human wearing an exoskeleton demonstrate that the proposed control paradigm can generate assistance to assist human users in maintaining balance while undergoing gait perturbations and recovering from initial unsafe postures.
引用
收藏
页码:778 / 783
页数:6
相关论文
共 50 条
  • [1] Review of Lower-Limb (Quasi-)Passive Exoskeletons for Human Augmentation
    Zhou, Tiancheng
    Li, Tianyun
    Zhou, Hongkuan
    Zheng, Wei
    IEEE ACCESS, 2025, 13 : 5694 - 5705
  • [2] Lower-Limb Medical and Rehabilitation Exoskeletons: A Review of the Current Designs
    Plaza, Alberto
    Hernandez, Mar
    Puyuelo, Gonzalo
    Garces, Elena
    Garcia, Elena
    IEEE REVIEWS IN BIOMEDICAL ENGINEERING, 2023, 16 : 278 - 291
  • [3] Embodiment for Robotic Lower-Limb Exoskeletons: A Narrative Review
    Hybart, Rachel L.
    Ferris, Daniel P.
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 657 - 668
  • [4] Embodiment for Robotic Lower-Limb Exoskeletons: A Narrative Review
    Hybart, Rachel L. L.
    Ferris, Daniel P. P.
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 657 - 668
  • [5] Gait parameter adaptation for lower-limb exoskeletons
    Sanz-Merodio, D.
    Cestari, M.
    Arevalo, J. C.
    Garcia, E.
    PROCEEDINGS IWBBIO 2013: INTERNATIONAL WORK-CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, 2013, : 667 - 675
  • [6] Mechatronic Exoskeletons for Lower-Limb Rehabilitation: An Innovative Review
    Huamanchahua, Deyby
    Taza-Aquino, Yerson
    Figueroa-Bados, Jhon
    Alanya-Villanueva, Jason
    Vargas-Martinez, Adriana
    Ramirez-Mendoza, Ricardo A.
    2021 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS), 2021, : 926 - 933
  • [7] Biomechanical models in the lower-limb exoskeletons development: a review
    Firouzi, Vahid
    Seyfarth, Andre
    Song, Seungmoon
    von Stryk, Oskar
    Sharbafi, Maziar Ahmad
    JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2025, 22 (01)
  • [8] Trajectory Modulation for Impact Reducing of Lower-Limb Exoskeletons
    Zhang, Long
    Song, Guangkui
    Zou, Chaobin
    Huang, Rui
    Cheng, Hong
    Hu, Dekun
    MICROMACHINES, 2022, 13 (06)
  • [9] Recent Advances in Pediatric Wearable Lower-Limb Exoskeletons for Gait Rehabilitation: A Systematic Review
    Pacheco-Cherrez, Josue
    Tudon-Martinez, Juan C.
    Lozoya-Santos, Jorge de J.
    IEEE ACCESS, 2025, 13 : 50511 - 50533
  • [10] The Progressive Intertwinement Between Design, Human Needs and the Regulation of Care Technology: The Case of Lower-Limb Exoskeletons
    Fosch-Villaronga, Eduard
    Ozcan, Beste
    INTERNATIONAL JOURNAL OF SOCIAL ROBOTICS, 2020, 12 (04) : 959 - 972