WKLD-Based Feature Extraction for Diagnosis of Epilepsy Based on EEG

被引:4
作者
Cai, Haoyang [1 ]
Yan, Ying [2 ]
Liu, Guanting [1 ]
Cai, Jun [2 ,3 ]
David Cheok, Adrian [2 ]
Liu, Na [4 ]
Hua, Chengcheng [2 ]
Lian, Jing [2 ]
Fan, Zhiyong [2 ]
Chen, Anqi [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Reading Acad, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Automat, C MEIC, ICAEET, Nanjing 210044, Peoples R China
[3] Anhui Jianzhu Univ, Sch Mech & Elect Engn, Hefei 230009, Peoples R China
[4] Nanjing Med Univ, Nanjing Chest Hosp, Nanjing 210029, Peoples R China
关键词
Feature extraction; Electroencephalography; Epilepsy; Entropy; Complexity theory; Time series analysis; Brain modeling; electroencephalogram; discrete wavelet transform; Kullback-Leibler divergence; residual multidimensional Taylor network (ResMTN); SEIZURE DETECTION; APPROXIMATE ENTROPY; CLASSIFICATION; SIGNALS;
D O I
10.1109/ACCESS.2024.3401568
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
High-performance automated detection methods for epilepsy play a crucial role in clinical diagnostic support. To address the challenge of effectively extracting features from epileptic EEG signals, characterized by strong spontaneity and complexity, a novel feature extraction approach based on Window Kullback-Leibler Divergence (WKLD) is proposed, coupled with discrete wavelet analysis for EEG signal feature extraction. Then, a Residual Multidimensional Taylor Network (ResMTN) classifier is applied for epilepsy state classification. Experimental results demonstrate an accuracy of 98% in classifying EEG signals during seizure and interictal periods, with both specificity and sensitivity reaching 98.18%, outperforming existing widely-used feature extraction and classification methods.
引用
收藏
页码:69276 / 69287
页数:12
相关论文
共 32 条
[1]   EPILEPTIC SPIKE DETECTION USING CONTINUOUS WAVELET TRANSFORMS AND ARTIFICIAL NEURAL NETWORKS [J].
Abibullaev, Berdakh ;
Seo, Hee Don ;
Kim, Min Soo .
INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2010, 8 (01) :33-48
[2]  
[Anonymous], 2021, Cumhuriyet Sci. J., V42, P508
[3]   Tunable-QWavelet Transform Based Multiscale Entropy Measure for Automated Classification of Epileptic EEG Signals [J].
Bhattacharyya, Abhijit ;
Pachori, Ram Bilas ;
Upadhyay, Abhay ;
Acharya, U. Rajendra .
APPLIED SCIENCES-BASEL, 2017, 7 (04)
[4]  
Curtis M.De., 2012, Interictal Epileptiform Discharges in Partial
[5]   AUTOMATIC IDENTIFICATION OF EPILEPTIC AND BACKGROUND EEG SIGNALS USING FREQUENCY DOMAIN PARAMETERS [J].
Faust, Oliver ;
Acharya, U. Rajendra ;
Min, Lim Choo ;
Sputh, Bernhard H. C. .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2010, 20 (02) :159-176
[6]   Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks [J].
Guo, Ling ;
Rivero, Daniel ;
Pazos, Alejandro .
JOURNAL OF NEUROSCIENCE METHODS, 2010, 193 (01) :156-163
[7]   A Novel Signal Modeling Approach for Classification of Seizure and Seizure-Free EEG Signals [J].
Gupta, Anubha ;
Singh, Pushpendra ;
Karlekar, Mandar .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2018, 26 (05) :925-935
[8]   Epileptic seizure identification using entropy of FBSE based EEG rhythms [J].
Gupta, Vipin ;
Pachori, Ram Bilas .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2019, 53
[9]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[10]   Spectral entropy indicates electrophysiological and hemodynamic changes in drug-resistant epilepsy - A multimodal MREG study [J].
Helakari, H. ;
Kananen, J. ;
Huotari, N. ;
Raitamaa, L. ;
Tuovinen, T. ;
Borchardt, V ;
Rasila, A. ;
Raatikainen, V ;
Starck, T. ;
Hautaniemi, T. ;
Myllyla, T. ;
Tervonen, O. ;
Rytky, S. ;
Keinanen, T. ;
Korhonen, V ;
Kiviniemi, V ;
Ansakorpi, H. .
NEUROIMAGE-CLINICAL, 2019, 22