Artificial Intelligence - Enabled Deep Learning Model for Diabetes Prediction Using Deep Belief Network with Bayesian Optimization

被引:0
|
作者
Akinsola, Jide Ebenezer Taiwo [1 ]
Ajagbe, Sunday Adeola [2 ]
Olajubu, Emmanuel Ajayi [3 ]
Lawal, Azeezat Oluwayemisi [1 ]
Aderounmu, Ganiyu Adesola [3 ]
Adigun, Matthew Olusegun [4 ]
机构
[1] First Tech Univ, Dept Comp Sci, Ibadan, Nigeria
[2] First Tech Univ, Dept Comp & Ind Engn, Ibadan, Nigeria
[3] Obafemi Awolowo Univ, Dept Comp Sci & Engn, Ife, Nigeria
[4] Univ Zululand, Dept Comp Sci, Kwa Dlangezwa, South Africa
关键词
bayesian optimization; deep belief network; deep learning; diabetes; recurrent neural network;
D O I
10.1109/CSCI62032.2023.00063
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Diabetes is one of the major health issues that affect more than 10.5 percent of the adult population across the globe. This study applied deep learning techniques of deep belief network (DBN), long short-term memory (LSTM) and recurrent neural network (RNN) with Bayesian optimization on a diabetes dataset to forecast patients with diabetes. A splitting ratio of 80:20 was used for model performance evaluation. DBN model had the lowest mean absolute error in comparison to the other two models with 95.79% accuracy, 0.0331 mean absolute error, 0.0709 mean squared error, 0.1204 loss function, 0.9458 precision, 0.1819 RAISE, and 0.5307 recall. The results from this study validate that the DBN model can be used on a larger dataset to reduce variance and model overfitting, thereby achieving a better accuracy score.
引用
收藏
页码:353 / 358
页数:6
相关论文
共 50 条
  • [41] Optimization-enabled deep learning for sentiment rating prediction using review data
    Anthal, Jyotsna
    Sharma, Bhavna
    Manhas, Jatinder
    SERVICE ORIENTED COMPUTING AND APPLICATIONS, 2023, 17 (01) : 39 - 58
  • [42] Construction of Artificial Intelligence Music Teaching Application Model Using Deep Learning
    Chu, Xiaoli
    MOBILE INFORMATION SYSTEMS, 2022, 2022
  • [43] Prediction of optimal surgical outcomes with radiologic images using deep learning artificial intelligence
    Newtson, A. M.
    Mattson, J. N.
    Goodheart, M. J.
    Bender, D. P.
    Rajput, M.
    McDonald, M.
    Lyons, Y. A.
    Reyes, H. D.
    Gonzalez-Bosquet, J.
    GYNECOLOGIC ONCOLOGY, 2019, 154 : 156 - 156
  • [44] Coalbed methane content prediction using deep belief network
    Peng, Fan
    Peng, Suping
    Du, Wenfeng
    Liu, Hongshuan
    INTERPRETATION-A JOURNAL OF SUBSURFACE CHARACTERIZATION, 2020, 8 (02): : T309 - T321
  • [45] Improving Plant Disease Classification With Deep-Learning-Based Prediction Model Using Explainable Artificial Intelligence
    Nigar, Natasha
    Faisal, Hafiz Muhammad
    Umer, Muhammad
    Oki, Olukayode
    Manappattukunnel Lukose, Jose
    IEEE ACCESS, 2024, 12 : 100005 - 100014
  • [46] Pediatric diabetes prediction using deep learning
    El-Bashbishy, Abeer El-Sayyid
    El-Bakry, Hazem M.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [47] An Artificial Intelligence-Based Intrusion Detection System using Optimization and Deep Learning
    Garapati, Satish Kumar
    Sigappi, A. N.
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (06) : 1200 - 1217
  • [48] Training a Neural Network to Predict House Rents Using Artificial Intelligence and Deep Learning
    Yang, Yonghu
    Dai, Hong-Mei
    Chao, Chung-Hsing
    Wei, Sufen
    Yang, Cheng-Fu
    SENSORS AND MATERIALS, 2023, 35 (10) : 4671 - 4680
  • [49] A Deep Learning Model for Predicting Movie Box Office Based on Deep Belief Network
    Wang, Wei
    Xiu, Jiapeng
    Yang, Zhengqiu
    Liu, Chen
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2018, PT II, 2018, 10942 : 530 - 541
  • [50] Student Performance Prediction Using Atom Search Optimization Based Deep Belief Neural Network
    Surenthiran, S.
    Rajalakshmi, R.
    Sujatha, S. S.
    OPTICAL MEMORY AND NEURAL NETWORKS, 2021, 30 (02) : 157 - 171