Artificial Intelligence - Enabled Deep Learning Model for Diabetes Prediction Using Deep Belief Network with Bayesian Optimization

被引:0
|
作者
Akinsola, Jide Ebenezer Taiwo [1 ]
Ajagbe, Sunday Adeola [2 ]
Olajubu, Emmanuel Ajayi [3 ]
Lawal, Azeezat Oluwayemisi [1 ]
Aderounmu, Ganiyu Adesola [3 ]
Adigun, Matthew Olusegun [4 ]
机构
[1] First Tech Univ, Dept Comp Sci, Ibadan, Nigeria
[2] First Tech Univ, Dept Comp & Ind Engn, Ibadan, Nigeria
[3] Obafemi Awolowo Univ, Dept Comp Sci & Engn, Ife, Nigeria
[4] Univ Zululand, Dept Comp Sci, Kwa Dlangezwa, South Africa
关键词
bayesian optimization; deep belief network; deep learning; diabetes; recurrent neural network;
D O I
10.1109/CSCI62032.2023.00063
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Diabetes is one of the major health issues that affect more than 10.5 percent of the adult population across the globe. This study applied deep learning techniques of deep belief network (DBN), long short-term memory (LSTM) and recurrent neural network (RNN) with Bayesian optimization on a diabetes dataset to forecast patients with diabetes. A splitting ratio of 80:20 was used for model performance evaluation. DBN model had the lowest mean absolute error in comparison to the other two models with 95.79% accuracy, 0.0331 mean absolute error, 0.0709 mean squared error, 0.1204 loss function, 0.9458 precision, 0.1819 RAISE, and 0.5307 recall. The results from this study validate that the DBN model can be used on a larger dataset to reduce variance and model overfitting, thereby achieving a better accuracy score.
引用
收藏
页码:353 / 358
页数:6
相关论文
共 50 条
  • [31] Crow search optimization with deep transfer learning enabled ventricular fibrillation prediction model
    Deepti Sharma
    Narendra Kohli
    International Journal of Information Technology, 2025, 17 (2) : 1087 - 1101
  • [32] Prediction Model for Students' Future Development by Deep Learning and Tensorflow Artificial Intelligence Engine
    Fok, Wilton W. T.
    He, Y. S.
    Yeung, H. H. Au
    Law, K. Y.
    Cheung, K. H.
    Ai, Y. Y.
    Ho, P.
    2018 4TH INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT (ICIM2018), 2018, : 103 - 106
  • [33] A Deep Belief Network Based Model for Urban Haze Prediction
    Lu, Huimin
    Song, Jingjing
    Di, Tianyi
    Moradi Kurdestany, Jamshid
    Wang, Hongzhi
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2018, 25 (02): : 519 - 527
  • [34] An artificial intelligence driven facial emotion recognition system using hybrid deep belief rain optimization
    Alamgir, Fakir Mashuque
    Alam, Md Shafiul
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (02) : 2437 - 2464
  • [35] An artificial intelligence driven facial emotion recognition system using hybrid deep belief rain optimization
    Fakir Mashuque Alamgir
    Md. Shafiul Alam
    Multimedia Tools and Applications, 2023, 82 : 2437 - 2464
  • [36] Cloud-enabled Diabetic Retinopathy Prediction System using optimized deep Belief Network Classifier
    Rajavel R.
    Sundaramoorthy B.
    Gr K.
    Ravichandran S.K.
    Leelasankar K.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (10) : 14101 - 14109
  • [37] Bayesian optimization and deep learning for steering wheel angle prediction
    Alessandro Riboni
    Nicolò Ghioldi
    Antonio Candelieri
    Matteo Borrotti
    Scientific Reports, 12
  • [38] Bayesian optimization and deep learning for steering wheel angle prediction
    Riboni, Alessandro
    Ghioldi, Nicolo
    Candelieri, Antonio
    Borrotti, Matteo
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [39] Autism spectrum disorder classification using Adam war strategy optimization enabled deep belief network
    Bhandage, Venkatesh
    Rao, K. Mallikharjuna
    Muppidi, Satish
    Maram, Balajee
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 86
  • [40] Optimization-enabled deep learning for sentiment rating prediction using review data
    Jyotsna Anthal
    Bhavna Sharma
    Jatinder Manhas
    Service Oriented Computing and Applications, 2023, 17 : 39 - 58