Constructing a Size-Controllable Spherical P2-Type Layered Oxides Cathode That Achieves Practicable Sodium-Ion Batteries

被引:5
|
作者
Yin, Shuo [1 ]
Tao, Zongzhi [2 ]
Zhang, Yuying [1 ]
Zhang, Xinpeng [1 ]
Yu, Lai [2 ]
Ji, Fangli [1 ]
Ma, Xinyi [2 ]
Yuan, Guohe [1 ]
Zhang, Genqiang [2 ]
机构
[1] CNGR Adv Mat Co Ltd, Changsha 410600, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Dept Mat Sci & Engn, CAS Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
sodium-ion battery; layered metal oxides; controllingprecursors; morphological design; cylindrical cell; NI; CHALLENGES; PHASE; CO; LI;
D O I
10.1021/acsami.4c04855
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
P2-type layered metal oxides are regarded as promising cathode materials for sodium-ion batteries due to their high voltage platform and rapid Na+ diffusion kinetics. However, limited capacity and unfavorable cycling stability resulting from inevitable phase transformation and detrimental structure collapse hinder their future application. Herein, based on P2-type Na0.67Ni0.18Mn0.67Cu0.1Zn0.05O2, we synthesized a series of secondary spherical morphology cathodes with different radii derived from controlling precursors prepared by a coprecipitation method, which can be promoted to large-scale production. Consequently, the synthesized materials possessed a high tap density of 1.52 g cm(-3) and a compacted density of 3.2 g cm(-3). The half cells exhibited a specific capacity of 111.8 mAh g(-1) at a current density of 0.1 C as well as an 82.64% capacity retention with a high initial capacity of 85.80 mAh g(-1) after 1000 cycles under a rate of 5 C. Notably, in situ X-ray diffraction revealed a reversible P2-OP4 phase transition and displayed a tiny volume change of 6.96% during the charge/discharge process, indicating an outstanding cycling stability of the modified cathode. Commendably, the cylindrical cell achieved a capacity of 4.7 Ah with almost no change during 1000 cycles at 2 C, suggesting excellent potential for future applications.
引用
收藏
页码:26340 / 26347
页数:8
相关论文
共 50 条
  • [41] Ce-substituted P2-type layered cathode with interfacial/ bulk stability for sodium ion batteries
    Lei, Lanlan
    Li, Yong
    Liu, Guoliang
    Wang, Guangming
    Hou, Jie
    Wang, Juan
    CERAMICS INTERNATIONAL, 2024, 50 (21) : 41180 - 41188
  • [42] Design and synthesis of a stable-performance P2-type layered cathode material for sodium ion batteries
    Liu, Shuo
    Jiang, Xiaolei
    Zhang, Junshu
    Yang, Jian
    Qian, Yitai
    RSC ADVANCES, 2016, 6 (60): : 55327 - 55330
  • [43] Discharge State of Layered P2-Type Cathode Reveals Unsafe than Charge Condition in Thermal Runaway Event for Sodium-Ion Batteries
    Palanisamy, Manikandan
    Boddu, Venkata Rami Reddy
    Shirage, Parasharam M.
    Pol, Vilas G.
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (27) : 31594 - 31604
  • [44] The effect of configurational entropy on acoustic emission of P2-type layered oxide cathodes for sodium-ion batteries
    Dreyer, Soeren L.
    Zhang, Ruizhuo
    Wang, Junbo
    Kondrakov, Aleksandr
    Wang, Qingsong
    Brezesinski, Torsten
    Janek, Juergen
    JOURNAL OF PHYSICS-ENERGY, 2023, 5 (03):
  • [45] Functional surface modification of P2-type layered Mn-based oxide cathode by thin layer of NASICON for sodium-ion batteries
    Shao, Yuqiu
    Wang, Xinxin
    Li, Bingchen
    Ma, Huirong
    Chen, Jingjing
    Wang, Dajian
    Dong, Chenlong
    Mao, Zhiyong
    ELECTROCHIMICA ACTA, 2023, 442
  • [46] Achieving Stable Cycling Performance in a P2-Type Layered Oxide Cathode through a Synergic Li/Zn Doping for Sodium-Ion Batteries
    Dong, Tiancheng
    Tang, Xinlei
    Hassan, Muhammad Mudassir
    Wang, Wenxuan
    Hu, Shan
    Jian, Zelang
    Chen, Wen
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (36) : 47378 - 47386
  • [47] Effect of lithium doping in P2-Type layered oxide cathodes on the electrochemical performances of Sodium-Ion batteries
    Li, Lijiang
    Su, Gaoqin
    Lu, Chu
    Ma, Xiaobo
    Ma, Ling
    Wang, Hailong
    Cao, Zhijie
    CHEMICAL ENGINEERING JOURNAL, 2022, 446
  • [48] Structural Regulation of P2-Type Layered Oxide with Anion/Cation Codoping Strategy for Sodium-Ion Batteries
    Wang, Xu
    Yang, Zixiang
    Chen, Dongliang
    Lu, Bin
    Zhang, Qinghua
    Hou, Yang
    Wu, Zhenguo
    Ye, Zhizhen
    Li, Tongtong
    Lu, Jianguo
    ADVANCED FUNCTIONAL MATERIALS, 2024,
  • [49] Copper Substitution in P2-Type Sodium Layered Oxide To Mitigate Phase Transition and Enhance Cyclability of Sodium-Ion Batteries
    Wen, Yanfen
    Huang, Zheng
    Le, Jiabo
    Dai, Peng
    Shi, Chenguang
    Li, Gen
    Zhou, Shiyuan
    Fan, Jingjing
    Zhuang, Shuxin
    Lu, Mi
    Huang, Ling
    Sun, Shi-Gang
    ACS APPLIED MATERIALS & INTERFACES, 2022, : 29813 - 29821
  • [50] Review-Manganese-Based P2-Type Transition Metal Oxides as Sodium-Ion Battery Cathode Materials
    Clement, Raphaele J.
    Bruce, Peter G.
    Grey, Clare P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (14) : A2589 - A2604