High-Entropy Transition Metal Phosphorus Trichalcogenides for Rapid Sodium Ion Diffusion

被引:8
|
作者
Huang, Song [1 ]
Qiu, Zanlin [2 ]
Zhong, Jiang [3 ]
Wu, Shengqiang [2 ]
Han, Xiaocang [2 ]
Hu, Wenchao [2 ]
Han, Ziyi [4 ]
Cheng, Wing Ni [2 ]
Luo, Yan [2 ]
Meng, Yuan [2 ]
Hu, Zuyang [1 ]
Zhou, Xuan [1 ]
Guo, Shaojun [2 ]
Zhu, Jian [3 ]
Zhao, Xiaoxu [2 ]
Li, Cheng Chao [1 ]
机构
[1] Guangdong Univ Technol, Sch Chem Engn & Light Ind, Guangdong Prov Key Lab Plant Resources Biorefinery, Guangzhou 510006, Peoples R China
[2] Peking Univ, Sch Mat Sci & Engn, Beijing 100871, Peoples R China
[3] Hunan Univ, Coll Chem & Chem Engn, State Key Lab Chemo Biosensing & Chemometr, Hunan Key Lab Twodimens Mat, Changsha 410082, Peoples R China
[4] Tianjin Univ, Sch Sci, Dept Chem, Tianjin Key Lab Mol Optoelect Sci, Tianjin 300072, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
high-entropy materials; ion diffusion; scanning transmission electron microscopy; strain engineering; transition metal phosphorus trichalcogenides; ELECTRIC-FIELD; BATTERY; STATE; OXIDE; VISUALIZATION; TRENDS; SPACE; MOS2;
D O I
10.1002/adma.202405170
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-entropy strategies are regarded as a powerful means to enhance performance in energy storage fields. The improved properties are invariably ascribed to entropy stabilization or synergistic cocktail effect. Therefore, the manifested properties in such multicomponent materials are usually unpredictable. Elucidating the precise correlations between atomic structures and properties remains a challenge in high-entropy materials (HEMs). Herein, atomic-resolution scanning transmission electron microscopy annular dark field (STEM-ADF) imaging and four dimensions (4D)-STEM are combined to directly visualize atomic-scale structural and electric information in high-entropy FeMnNiVZnPS3. Aperiodic stacking is found in FeMnNiVZnPS3 accompanied by high-density strain soliton boundaries (SSBs). Theoretical calculation suggests that the formation of such structures is attributed to the imbalanced stress of distinct metal-sulfur bonds in FeMnNiVZnPS3. Interestingly, the electric field concentrates along the two sides of SSBs and gradually diminishes toward the two-dimensional (2D) plane to generate a unique electric field gradient, strongly promoting the ion-diffusion rate. Accordingly, high-entropy FeMnNiVZnPS3 demonstrates superior ion-diffusion coefficients of 10-9.7-10-8.3 cm2 s-1 and high-rate performance (311.5 mAh g-1 at 30 A g-1). This work provides an alternative way for the atomic-scale understanding and design of sophisticated HEMs, paving the way for property engineering in multi-component materials. The entropy-induced strain soliton boundaries (SSBs) and aperiodic stacking together with corresponding electric field distribution within FeMnNiVZnPS3 are atomically resolved. The correlation of such unique atomic/electronic structures and the sodium ion diffusion dynamics inside high-entropy FeMnNiVZnPS3 is established. These insights are expected to be extended to a wide range of high-entropy systems. image
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Two-Dimensional High-Entropy Metal Phosphorus Trichalcogenides for Enhanced Hydrogen Evolution Reaction
    Wang, Ran
    Huang, Jinzhen
    Zhang, Xinghong
    Han, Jiecai
    Zhang, Zhihua
    Gao, Tangling
    Xu, Lingling
    Liu, Shengwei
    Xu, Ping
    Song, Bo
    ACS NANO, 2022, 16 (03) : 3593 - 3603
  • [2] High-entropy two-dimensional metal phosphorus trichalcogenides boost high-performance potassium ion storage devices via electrochemical reconstruction
    Chien, Po-Wen
    Chang, Che-Bin
    Tuan, Hsing-Yu
    ENERGY STORAGE MATERIALS, 2023, 61
  • [3] Local structure in high-entropy transition metal diborides
    Gaboardi, Mattia
    Monteverde, Frederic
    Saraga, Federico
    Aquilanti, Giuliana
    Feng, Lun
    Fahrenholtz, William
    Hilmas, Gregory
    ACTA MATERIALIA, 2022, 239
  • [4] High-entropy alloys in light transition metal systems
    Kozak, R.
    Steurer, W.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2014, 70 : C943 - C943
  • [5] SHS metallurgy of high-entropy transition metal alloys
    Sanin, V. N.
    Yukhvid, V. I.
    Ikornikov, D. M.
    Andreev, D. E.
    Sachkova, N. V.
    Alymov, M. I.
    DOKLADY PHYSICAL CHEMISTRY, 2016, 470 : 145 - 149
  • [6] SHS metallurgy of high-entropy transition metal alloys
    V. N. Sanin
    V. I. Yukhvid
    D. M. Ikornikov
    D. E. Andreev
    N. V. Sachkova
    M. I. Alymov
    Doklady Physical Chemistry, 2016, 470 : 145 - 149
  • [7] On the diffusion in high-entropy alloys
    Beke, D. L.
    Erdelyi, G.
    MATERIALS LETTERS, 2016, 164 : 111 - 113
  • [8] Multifunctional Catalysts Based on High-Entropy Transition Metal Alloys
    Pugacheva, E. V.
    Zhuk, S. Ya.
    Bystrova, I. M.
    Romazeva, K. A.
    Ikornikov, D. M.
    Boyarchenko, O. D.
    Khomenko, N. Yu.
    Belousova, O. V.
    Sanin, V. N.
    Borshch, V. N.
    INTERNATIONAL JOURNAL OF SELF-PROPAGATING HIGH-TEMPERATURE SYNTHESIS, 2024, 33 (03) : 200 - 208
  • [9] Modeling high-entropy transition metal alloys with alchemical compression
    Lopanitsyna, Nataliya
    Fraux, Guillaume
    Springer, Maximilian A.
    De, Sandip
    Ceriotti, Michele
    PHYSICAL REVIEW MATERIALS, 2023, 7 (04)
  • [10] High-entropy structure design in layered transition metal dichalcogenides
    Chen, Hongxiang
    Li, Sheng
    Huang, Shuxian
    Ma, LiAn
    Liu, Sheng
    Tang, Fang
    Fang, Yong
    Dai, Pinqiang
    ACTA MATERIALIA, 2022, 222