Finite element error estimation for parabolic optimal control with measurement data

被引:0
|
作者
Yang, Xun [1 ]
Luo, Xianbing [1 ]
机构
[1] Guizhou Univ, Sch Math & Stat, Guiyang 550025, Guizhou, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Finite element; Measure data; Parabolic optimal control; Euler method; EQUATIONS; DISCRETIZATION; APPROXIMATIONS;
D O I
10.1016/j.rinam.2024.100456
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A prior error estimate is considered for the finite element (FE) approximation of a parabolic optimal control (POC) with spatial measurement data. We use conforming linear finite element to discretize the space for the state, piecewise constant for the control, and Euler method to discretize the time. The convergence order O(h(2-s/2) + k(1/2)) in the L-2(0, T, L-2(Omega))-norm of state variable, co-state, and control variable are obtained. To validate our theory, numerical tests are executed.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Finite Element Error Estimation for Parabolic Optimal Control Problems with Pointwise Observations
    Liang, Dongdong
    Gong, Wei
    Xie, Xiaoping
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2022, 15 (01): : 165 - 199
  • [2] Finite element error estimation for parabolic optimal control problems with time delay
    Zhang, Xindan
    Zhao, Jianping
    Hou, Yanren
    APPLIED NUMERICAL MATHEMATICS, 2025, 212 : 176 - 196
  • [3] A posteriori error analysis for finite element approximations of parabolic optimal control problems with measure data
    Shakya, Pratibha
    Sinha, Rajen Kumar
    APPLIED NUMERICAL MATHEMATICS, 2019, 136 : 23 - 45
  • [4] A Priori Error Estimates for Finite Element Discretizations of Parabolic Optimal Control Problems with Measure Data
    Shakya, Pratibha
    Sinha, Rajen Kumar
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 41 (02) : 158 - 191
  • [5] A PRIORI ERROR ANALYSIS FOR FINITE ELEMENT APPROXIMATION OF PARABOLIC OPTIMAL CONTROL PROBLEMS WITH POINTWISE CONTROL
    Gong, Wei
    Hinze, Michael
    Zhou, Zhaojie
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (01) : 97 - 119
  • [6] Some error estimates of finite volume element method for parabolic optimal control problems
    Luo, Xianbing
    Chen, Yanping
    Huang, Yunqing
    Hou, Tianliang
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2014, 35 (02): : 145 - 165
  • [7] Finite element approximations of parabolic optimal control problem with measure data in time
    Shakya, Pratibha
    Sinha, Rajen Kumar
    APPLICABLE ANALYSIS, 2021, 100 (12) : 2706 - 2734
  • [8] A priori error estimates of finite volume element method for bilinear parabolic optimal control problem
    Lu, Zuliang
    Xu, Ruixiang
    Hou, Chunjuan
    Xing, Lu
    AIMS MATHEMATICS, 2023, 8 (08): : 19374 - 19390
  • [9] Error estimates for parabolic optimal control problem by fully discrete mixed finite element methods
    Chen, Yanping
    Lu, Zuliang
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2010, 46 (11) : 957 - 965
  • [10] A Posteriori Error Estimates of Semidiscrete Mixed Finite Element Methods for Parabolic Optimal Control Problems
    Chen, Yanping
    Lin, Zhuoqing
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2015, 5 (01) : 85 - 108