How to correctly develop q-RASAR models for predictive cheminformatics

被引:8
作者
Banerjee, Arkaprava [1 ]
Roy, Kunal [1 ]
机构
[1] Jadavpur Univ, Dept Pharmaceut Technol, Drug Theoret & Cheminformat Lab, Kolkata, India
关键词
q-RASAR; read-across; machine learning; QSAR; data fusion; leave-same-out; predictions; modeling;
D O I
10.1080/17460441.2024.2376651
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
引用
收藏
页码:1017 / 1022
页数:6
相关论文
共 40 条
  • [1] Banerjee A., 2024, q-RASAR. A Path to Predictive Cheminformatics, DOI [10.1007/978-3-031-52057-0, DOI 10.1007/978-3-031-52057-0]
  • [2] Read-across-based intelligent learning: development of a global q-RASAR model for the efficient quantitative predictions of skin sensitization potential of diverse organic chemicals
    Banerjee, Arkaprava
    Roy, Kunal
    [J]. ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS, 2023, 25 (10) : 1626 - 1644
  • [3] Prediction-Inspired Intelligent Training for the Development of Classification Read-across Structure-Activity Relationship (c-RASAR) Models for Organic Skin Sensitizers: Assessment of Classification Error Rate from Novel Similarity Coefficients
    Banerjee, Arkaprava
    Roy, Kunal
    [J]. CHEMICAL RESEARCH IN TOXICOLOGY, 2023, 36 (09) : 1518 - 1531
  • [4] Machine-learning-based similarity meets traditional QSAR: "q-RASAR" for the enhancement of the external predictivity and detection of prediction confidence outliers in an hERG toxicity dataset
    Banerjee, Arkaprava
    Roy, Kunal
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2023, 237
  • [5] Efficient predictions of cytotoxicity of TiO2-based multi-component nanoparticles using a machine learning-based q-RASAR approach
    Banerjee, Arkaprava
    Kar, Supratik
    Pore, Souvik
    Roy, Kunal
    [J]. NANOTOXICOLOGY, 2023, 17 (01) : 78 - 93
  • [6] On Some Novel Similarity-Based Functions Used in the ML-Based q-RASAR Approach for Efficient Quantitative Predictions of Selected Toxicity End Points
    Banerjee, Arkaprava
    Roy, Kunal
    [J]. CHEMICAL RESEARCH IN TOXICOLOGY, 2023, 36 (03) : 446 - 464
  • [7] A machine learning q-RASPR approach for efficient predictions of the specific surface area of perovskites
    Banerjee, Arkaprava
    Gajewicz-Skretna, Agnieszka
    Roy, Kunal
    [J]. MOLECULAR INFORMATICS, 2023, 42 (04)
  • [8] First report of q-RASAR modeling toward an approach of easy interpretability and efficient transferability
    Banerjee, Arkaprava
    Roy, Kunal
    [J]. MOLECULAR DIVERSITY, 2022, 26 (05) : 2847 - 2862
  • [9] In silico soil degradation and ecotoxicity analysis of veterinary pharmaceuticals on terrestrial species: first report
    Banjare, Purusottam
    Singh, Rekha
    Pandey, Nilesh Kumar
    Matore, Balaji Wamanrao
    Murmu, Anjali
    Singh, Jagadish
    Roy, Partha Pratim
    [J]. TOXICOLOGY RESEARCH, 2024, 13 (01)
  • [10] Machine learning - based q-RASAR modeling to predict acute contact toxicity of binary organic pesticide mixtures in honey bees
    Chatterjee, Mainak
    Banerjee, Arkaprava
    Tosi, Simone
    Carnesecchi, Edoardo
    Benfenati, Emilio
    Roy, Kunal
    [J]. JOURNAL OF HAZARDOUS MATERIALS, 2023, 460