Bayesian joint state and parameter tracking in autoregressive models

被引:0
作者
Senoz, Ismail [1 ]
Podusenko, Albert [1 ]
Kouw, Wouter M. [1 ]
de Vries, Bert [1 ,2 ]
机构
[1] Eindhoven Univ Technol, Eindhoven, Netherlands
[2] GN Hearing, Eindhoven, Netherlands
来源
LEARNING FOR DYNAMICS AND CONTROL, VOL 120 | 2020年 / 120卷
关键词
Autoregressive models; hierarchical Gaussian filter; factor graphs; online learning; variational message passing; FACTOR GRAPH APPROACH;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We address the problem of online Bayesian state and parameter tracking in autoregressive (AR) models with time-varying process noise variance. The involved marginalization and expectation integrals cannot be analytically solved. Moreover, the online tracking constraint makes sampling and batch learning methods unsuitable for this problem. We propose a hybrid variational message passing algorithm that robustly tracks the time-varying dynamics of the latent states, AR coefficients and process noise variance. Since message passing in a factor graph is a highly modular inference approach, the proposed methods easily extend to other non-stationary dynamic modeling problems.
引用
收藏
页码:95 / 104
页数:10
相关论文
共 17 条
  • [1] Akaike Hirotugu, 1998, Autoregressive Model Fitting for Control, P153
  • [2] Efficient particle filtering for jump Markov systems. Application to time-varying autoregressions
    Andrieu, C
    Davy, M
    Doucet, A
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2003, 51 (07) : 1762 - 1770
  • [3] Barber D., 2012, Bayesian Reasoning and Machine Learning
  • [4] Bayesian estimation of an autoregressive model using Markov chain Monte Carlo
    Barnett, G
    Kohn, R
    Sheather, S
    [J]. JOURNAL OF ECONOMETRICS, 1996, 74 (02) : 237 - 254
  • [5] GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY
    BOLLERSLEV, T
    [J]. JOURNAL OF ECONOMETRICS, 1986, 31 (03) : 307 - 327
  • [6] A factor graph approach to automated design of Bayesian signal processing algorithms
    Cox, Marco
    van de Laar, Thijs
    de Vries, Bert
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2019, 104 : 185 - 204
  • [7] On variational message passing on factor graphs
    Dauwels, Justin
    [J]. 2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 2546 - 2550
  • [8] Modeling non-Gaussian time-varying vector autoregressive processes by particle filtering
    Gencaga, Deniz
    Kuruoglu, Ercan E.
    Ertuzun, Aysin
    [J]. MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2010, 21 (01) : 73 - 85
  • [9] Application of Auto-Regressive Models to U.K. Wind Speed Data for Power System Impact Studies
    Hill, David C.
    McMillan, David
    Bell, Keith R. W.
    Infield, David
    [J]. IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2012, 3 (01) : 134 - 141
  • [10] A TIME-VARYING COEFFICIENT VECTOR AR MODELING OF NONSTATIONARY COVARIANCE TIME-SERIES
    JIANG, XQ
    KITAGAWA, G
    [J]. SIGNAL PROCESSING, 1993, 33 (03) : 315 - 331