Time-dependent density-functional theory study on nonlocal electron stopping for inertial confinement fusion

被引:0
作者
Nichols, Katarina A. [1 ,2 ]
Hu, S. X. [1 ,2 ,3 ]
White, Alexander J. [4 ]
Shaffer, Nathaniel R. [1 ]
Mihaylov, Deyan I. [1 ]
Arnold, Brennan [1 ,2 ]
Goncharov, Valeri N. [1 ,3 ]
Karasiev, Valentin V. [1 ]
Collins, Lee A. [4 ]
机构
[1] Univ Rochester, Lab Laser Energet, Rochester, NY 14623 USA
[2] Univ Rochester, Dept Phys & Astron, Rochester, NY 14611 USA
[3] Univ Rochester, Dept Mech Engn, Rochester, NY 14611 USA
[4] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
MOLECULAR-DYNAMICS; TRANSPORT; MODEL;
D O I
10.1063/5.0201735
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Understanding laser-target coupling is of the utmost importance for achieving high performance in laser-direct-drive (LDD) inertial confinement fusion (ICF) experiments. Thus, accurate modeling of electron transport and deposition through ICF-relevant materials and conditions is necessary to quantify the total thermal conduction and ablation. The stopping range is a key transport quantity used in thermal conduction models; in this work, we review the overall role that the electron mean free path (MFP) plays in thermal conduction and hydrodynamic simulations. The currently used modified Lee-More model employs various physics approximations. We discuss a recent model that uses time-dependent density functional theory (TD-DFT) to eliminate these approximations in both the calculation of the electron stopping power and corresponding MFP in conduction zone polystyrene (CH) plasma. In general, the TD-DFT calculations showed a larger MFP (lower stopping power) than the standard modified Lee-More model. Using the TD-DFT results, an analytical model for the electron deposition range, lambda(TD-DFT)(rho, T, K), was devised for CH plasmas between rho = [0.05 - 1.05] g/cm(3), KBT =[100 - 1000] eV. We implemented this model into LILAC, for simulations of a National Ignition Facility-scale LDD implosion and compared key physics quantities to ones obtained by simulations using the standard model. The implications of the obtained results and the path moving forward to calculate this same quantity in conduction-zone deuterium-tritium plasmas are further discussed, to hopefully close the understanding gap for laser target coupling in LDD-ICF simulations. (c) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:11
相关论文
共 66 条
  • [1] Achievement of Target Gain Larger than Unity in an Inertial Fusion Experiment
    Abu-Shawareb, H.
    Acree, R.
    Adams, P.
    Adams, J.
    Addis, B.
    Aden, R.
    Adrian, P.
    Afeyan, B. B.
    Aggleton, M.
    Aghaian, L.
    Aguirre, A.
    Aikens, D.
    Akre, J.
    Albert, F.
    Albrecht, M.
    Albright, B. J.
    Albritton, J.
    Alcala, J.
    Alday, C., Jr.
    Alessi, D. A.
    Alexander, N.
    Alfonso, J.
    Alfonso, N.
    Alger, E.
    Ali, S. J.
    Ali, Z. A.
    Allen, A.
    Alley, W. E.
    Amala, P.
    Amendt, P. A.
    Amick, P.
    Ammula, S.
    Amorin, C.
    Ampleford, D. J.
    Anderson, R. W.
    Anklam, T.
    Antipa, N.
    Appelbe, B.
    Aracne-Ruddle, C.
    Araya, E.
    Archuleta, T. N.
    Arend, M.
    Arnold, P.
    Arnold, T.
    Arsenlis, A.
    Asay, J.
    Atherton, L. J.
    Atkinson, D.
    Atkinson, R.
    Auerbach, M.
    [J]. PHYSICAL REVIEW LETTERS, 2024, 132 (06)
  • [2] Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment
    Abu-Shawareb, H.
    Acree, R.
    Adams, P.
    Adams, J.
    Addis, B.
    Aden, R.
    Adrian, P.
    Afeyan, B. B.
    Aggleton, M.
    Aghaian, L.
    Aguirre, A.
    Aikens, D.
    Akre, J.
    Albert, F.
    Albrecht, M.
    Albright, B. J.
    Albritton, J.
    Alcala, J.
    Alday, C., Jr.
    Alessi, D. A.
    Alexander, N.
    Alfonso, J.
    Alfonso, N.
    Alger, E.
    Ali, S. J.
    Ali, Z. A.
    Alley, W. E.
    Amala, P.
    Amendt, P. A.
    Amick, P.
    Ammula, S.
    Amorin, C.
    Ampleford, D. J.
    Anderson, R. W.
    Anklam, T.
    Antipa, N.
    Appelbe, B.
    Aracne-Ruddle, C.
    Araya, E.
    Arend, M.
    Arnold, P.
    Arnold, T.
    Asay, J.
    Atherton, L. J.
    Atkinson, D.
    Atkinson, R.
    Auerbach, J. M.
    Austin, B.
    Auyang, L.
    Awwal, A. S.
    [J]. PHYSICAL REVIEW LETTERS, 2022, 129 (07)
  • [3] MEASUREMENT OF THE Z13 CONTRIBUTION TO THE STOPPING POWER USING MEV PROTONS AND ANTIPROTONS - THE BARKAS EFFECT
    ANDERSEN, LH
    HVELPLUND, P
    KNUDSEN, H
    MOLLER, SP
    PEDERSEN, JOP
    UGGERHOJ, E
    ELSENER, K
    MORENZONI, E
    [J]. PHYSICAL REVIEW LETTERS, 1989, 62 (15) : 1731 - 1734
  • [4] Atzeni S., 2004, The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter
  • [5] X-ray Thomson Scattering in Warm Dense Matter without the Chihara Decomposition
    Baczewski, A. D.
    Shulenburger, L.
    Desjarlais, M. P.
    Hansen, S. B.
    Magyar, R. J.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (11)
  • [6] BARKAS WH, 1963, PHYS REV LETT, V11, P138, DOI 10.1103/PhysRevLett.11.138
  • [7] NON-SPITZER HEAT-FLOW IN A STEADILY ABLATING LASER-PRODUCED PLASMA
    BELL, AR
    [J]. PHYSICS OF FLUIDS, 1985, 28 (06) : 2007 - 2014
  • [8] Kinetic susceptibility and transport theory of collisional plasmas
    Brantov, AV
    Bychenkov, VY
    Rozmus, W
    Capjack, CE
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (12) : 125002 - 1
  • [9] Charged particle motion in a highly ionized plasma
    Brown, LS
    Preston, DL
    Singleton, RL
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2005, 410 (04): : 237 - 333
  • [10] Transverse electron susceptibility and the electromagnetic wave absorption in weakly collisional plasmas
    Bychenkov, VY
    Tikhonchuk, VT
    Rozmus, W
    [J]. PHYSICS OF PLASMAS, 1997, 4 (12) : 4205 - 4209