Meta-Learning with Neural Bandit Scheduler

被引:0
|
作者
Qi, Yunzhe [1 ]
Ban, Yikun [1 ]
Wei, Tianxin [1 ]
Zou, Jiaru [1 ]
Yao, Huaxiu [2 ]
He, Jingrui [1 ]
机构
[1] Univ Illinois, Champaign, IL 61820 USA
[2] Univ North Carolina Chapel Hill, Chapel Hill, NC USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023) | 2023年
基金
美国食品与农业研究所; 美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Meta-learning has been proven an effective learning paradigm for training machine learning models with good generalization ability. Apart from the common practice of uniformly sampling the meta-training tasks, existing methods working on task scheduling strategies are mainly based on pre-defined sampling protocols or the assumed task-model correlations, and greedily make scheduling decisions, which can lead to sub-optimal performance bottlenecks of the meta-model. In this paper, we propose a novel task scheduling framework under Contextual Bandits settings, named BASS, which directly optimizes the task scheduling strategy based on the status of the meta-model. By balancing the exploitation and exploration in meta-learning task scheduling, BASS can help tackle the challenge of limited knowledge about the task distribution during the early stage of meta-training, while simultaneously exploring potential benefits for forthcoming meta-training iterations through an adaptive exploration strategy. Theoretical analysis and extensive experiments are presented to show the effectiveness of our proposed framework.
引用
收藏
页数:35
相关论文
共 50 条
  • [21] Meta-learning spiking neural networks with surrogate gradient descent
    Stewart, Kenneth M.
    Neftci, Emre O.
    NEUROMORPHIC COMPUTING AND ENGINEERING, 2022, 2 (04):
  • [22] Interpretable Deep Convolutional Neural Networks via Meta-learning
    Liu, Xuan
    Wang, Xiaoguang
    Matwin, Stan
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [23] Robust Meta-Learning over Graphs with Graph Neural Networks
    Sadeghi, Alireza
    Giannakis, Georgios B.
    2024 IEEE 13RD SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP, SAM 2024, 2024,
  • [24] Meta-Learning for Low-Resource Neural Machine Translation
    Gu, Jiatao
    Wang, Yong
    Chen, Yun
    Cho, Kyunghyun
    Li, Victor O. K.
    2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 3622 - 3631
  • [25] A Meta-Learning Approach for Training Explainable Graph Neural Networks
    Spinelli, Indro
    Scardapane, Simone
    Uncini, Aurelio
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 4647 - 4655
  • [26] Learning to Forget for Meta-Learning
    Baik, Sungyong
    Hong, Seokil
    Lee, Kyoung Mu
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 2376 - 2384
  • [27] Submodular Meta-Learning
    Adibi, Arman
    Mokhtari, Aryan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [28] Online Meta-Learning
    Finn, Chelsea
    Rajeswaran, Aravind
    Kakade, Sham
    Levine, Sergey
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [29] Meta-learning with backpropagation
    Younger, AS
    Hochreiter, S
    Conwell, PR
    IJCNN'01: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2001, : 2001 - 2006
  • [30] Competitive Meta-Learning
    Boxi Weng
    Jian Sun
    Gao Huang
    Fang Deng
    Gang Wang
    Jie Chen
    IEEE/CAA Journal of Automatica Sinica, 2023, 10 (09) : 1902 - 1904