A study of emotion recognition methods incorporating functional brain network features and self-attention mechanisms

被引:0
|
作者
Zhang, Ye [1 ]
Li, Qi [1 ,2 ]
Liu, Yulong [1 ,2 ]
机构
[1] Changchun Univ Sci & Technol, Sch Comp Sci & Technol, 7089 Weixing Rd, Changchun, Jilin, Peoples R China
[2] Changchun Univ Sci & Technol, Zhongshan Res Inst, Zhongshan, Guangdong, Peoples R China
关键词
Feature fusion; Self-attentive mechanism; functional brain network; Median centrality; Clustering coefficient; Sentiment classification;
D O I
10.1145/3665689.3665749
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Aiming at the problem that a single feature is insufficient to characterize the emotional information in the emotion classification of EEG data, while the fusion of multiple features will lead to information redundancy, an emotion classification method that fuses brain functional network features and self-attention mechanism is proposed. The method introduces the median centrality feature (BC) and clustering coefficient feature (CC) to enhance the spatial information representation of brain regions; and uses the self-attention mechanism to establish a feature fusion model, through which the hidden relationship within the feature sequence is increased, which not only highlights the information coupling between the channels but also weakens the interfering information; and then uses the SVM classifier to classify the feature vectors for emotion classification, which is validated in the DEAP dataset. Validation. The experimental results show that the accuracy of the multi-feature fusion method in sentiment classification through self-attention reaches 85.13%. Compared with previous feature fusion methods, this method has better classification effect, proving its effectiveness and feasibility.
引用
收藏
页码:360 / 364
页数:5
相关论文
共 50 条
  • [21] IS CROSS-ATTENTION PREFERABLE TO SELF-ATTENTION FOR MULTI-MODAL EMOTION RECOGNITION?
    Rajan, Vandana
    Brutti, Alessio
    Cavallaro, Andrea
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4693 - 4697
  • [22] Emotion embedding framework with emotional self-attention mechanism for speaker recognition
    Li, Dongdong
    Yang, Zhuo
    Liu, Jinlin
    Yang, Hai
    Wang, Zhe
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [23] Masked face recognition with convolutional visual self-attention network
    Ge, Yiming
    Liu, Hui
    Du, Junzhao
    Li, Zehua
    Wei, Yuheng
    NEUROCOMPUTING, 2023, 518 : 496 - 506
  • [24] Self-Attention based Siamese Neural Network recognition Model
    Liu, Yuxing
    Chang, Geng
    Fu, Guofeng
    Wei, Yingchao
    Lan, Jie
    Liu, Jiarui
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 721 - 724
  • [25] Self-attention Bi-RNN for developer emotion recognition based on EEG
    Wang, Yingdong
    Zheng, Yuhui
    Cao, Lu
    Zhang, Zhiling
    Ruan, Qunsehng
    Wu, Qingfeng
    IET SOFTWARE, 2022,
  • [26] Self-attention Bi-RNN for developer emotion recognition based on EEG
    Wang, Yingdong
    Zheng, Yuhui
    Cao, Lu
    Zhang, Zhiling
    Ruan, Qunsehng
    Wu, Qingfeng
    IET SOFTWARE, 2023, 17 (04) : 620 - 631
  • [27] Speech emotion recognition using recurrent neural networks with directional self-attention
    Li, Dongdong
    Liu, Jinlin
    Yang, Zhuo
    Sun, Linyu
    Wang, Zhe
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 173
  • [28] Combining Gated Convolutional Networks and Self-Attention Mechanism for Speech Emotion Recognition
    Li, Chao
    Jiao, Jinlong
    Zhao, Yiqin
    Zhao, Ziping
    2019 8TH INTERNATIONAL CONFERENCE ON AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION WORKSHOPS AND DEMOS (ACIIW), 2019, : 105 - 109
  • [29] A Chinese Textual Entailment Recognition Method Incorporating Semantic Role and Self-Attention
    Zhang Z.-C.
    Zeng Y.-Y.
    Pang Y.-L.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (11): : 2162 - 2169
  • [30] Music Emotion Recognition Fusion on CNN-BiLSTM and Self-Attention Model
    Zhong, Zhipeng
    Wang, Hailong
    Su, Guibin
    Liu, Lin
    Pei, Dongmei
    Computer Engineering and Applications, 2024, 59 (03) : 94 - 103