Fair Short Paths in Vertex-Colored Graphs

被引:0
|
作者
Bentert, Matthias [1 ]
Kellerhals, Leon [1 ]
Niedermeier, Rolf [1 ]
机构
[1] Tech Univ Berlin, Algorithm & Computat Complex, Berlin, Germany
关键词
COMPLEXITY; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The computation of short paths in graphs with arc lengths is a pillar of graph algorithmics and network science. In a more diverse world, however, not every short path is equally valuable. For the setting where each vertex is assigned to a group (color), we provide a framework to model multiple natural fairness aspects. We seek to find short paths in which the number of occurrences of each color is within some given lower and upper bounds. Among other results, we prove the introduced problems to be computationally intractable (NP-hard and parameterized hard with respect to the number of colors) even in very restricted settings (such as each color should appear with exactly the same frequency), while also presenting an encouraging algorithmic result ("fixed-parameter tractability") related to the length of the sought solution path for the general problem.
引用
收藏
页码:12346 / 12354
页数:9
相关论文
共 50 条
  • [1] Tropical paths in vertex-colored graphs
    Cohen, Johanne
    Italiano, Giuseppe F.
    Manoussakis, Yannis
    Thang, Nguyen Kim
    Pham, Hong Phong
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2021, 42 (03) : 476 - 498
  • [2] Tropical paths in vertex-colored graphs
    Johanne Cohen
    Giuseppe F. Italiano
    Yannis Manoussakis
    Nguyen Kim Thang
    Hong Phong Pham
    Journal of Combinatorial Optimization, 2021, 42 : 476 - 498
  • [3] Tropical Paths in Vertex-Colored Graphs
    Cohen, Johanne
    Italiano, Giuseppe F.
    Manoussakis, Yannis
    Kim Thang Nguyen
    Hong Phong Pham
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, COCOA 2017, PT II, 2017, 10628 : 291 - 305
  • [4] TRIANGULATING VERTEX-COLORED GRAPHS
    MCMORRIS, FR
    WARNOW, TJ
    WIMER, T
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1994, 7 (02) : 296 - 306
  • [5] Vertex-Colored Encompassing Graphs
    Hoffmann, Michael
    Toth, Csaba D.
    GRAPHS AND COMBINATORICS, 2014, 30 (04) : 933 - 947
  • [6] Vertex-Colored Encompassing Graphs
    Michael Hoffmann
    Csaba D. Tóth
    Graphs and Combinatorics, 2014, 30 : 933 - 947
  • [7] Maximum Motif Problem in Vertex-Colored Graphs
    Dondi, Riccardo
    Fertin, Guillaume
    Vialette, Stephane
    COMBINATORIAL PATTERN MATCHING, PROCEEDINGS, 2009, 5577 : 221 - +
  • [8] Maximum Colorful Cycles in Vertex-Colored Graphs
    Italiano, Giuseppe F.
    Manoussakis, Yannis
    Nguyen Kim Thang
    Hong Phong Pham
    COMPUTER SCIENCE - THEORY AND APPLICATIONS, CSR 2018, 2018, 10846 : 106 - 117
  • [9] Connected Tropical Subgraphs in Vertex-Colored Graphs
    d'Auriac, Jean-Alexandre Angles
    Cohen, Nathann
    El Maftouhi, Hakim
    Harutyunyan, Ararat
    Legay, Sylvain
    Manoussakis, Yannis
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2016, 17 (03): : 327 - 347
  • [10] Maximum Colorful Cliques in Vertex-Colored Graphs
    Italiano, Giuseppe F.
    Manoussakis, Yannis
    Thang, Nguyen Kim
    Hong Phong Pham
    COMPUTING AND COMBINATORICS (COCOON 2018), 2018, 10976 : 480 - 491