Time-Dependent Multilevel Density Functional Theory

被引:2
作者
Giovannini, Tommaso [1 ]
Scavino, Marco [1 ]
Koch, Henrik [2 ]
机构
[1] Scuola Normale Super Pisa, I-56126 Pisa, Italy
[2] Norwegian Univ Sci & Technol, Dept Chem, N-7491 Trondheim, Norway
基金
欧洲研究理事会;
关键词
CHARGE FORCE-FIELDS; LINEAR-RESPONSE; EMBEDDING THEORY; HARTREE-FOCK; FRAGMENTATION; ENERGIES; POTENTIALS; TRANSITION; SOLVATION; MECHANICS;
D O I
10.1021/acs.jctc.4c00041
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a novel three-layer approach based on multilevel density functional theory (MLDFT) and polarizable molecular mechanics to simulate the electronic excitations of chemical systems embedded in an external environment within the time-dependent DFT formalism. In our method, the electronic structure of a target system, the chromophore, is determined in the field of an embedded inactive layer, which is treated as frozen. Long-range interactions are described by employing the polarizable fluctuating charge (FQ) force field. The resulting MLDFT/FQ thus accurately describes both electrostatics (and polarization) and non-electrostatic target-environment interactions. The robustness and reliability of the approach are demonstrated by comparing our results with experimental data reported for various organic molecules in solution.
引用
收藏
页码:3601 / 3612
页数:12
相关论文
共 99 条
[1]   Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers [J].
Abraham, Mark James ;
Murtola, Teemu ;
Schulz, Roland ;
Páll, Szilárd ;
Smith, Jeremy C. ;
Hess, Berk ;
Lindah, Erik .
SoftwareX, 2015, 1-2 :19-25
[2]   On the performance of quantum chemical methods to predict solvatochromic effects:: The case of acrolein in aqueous solution [J].
Aidas, Kestutis ;
Mogelhoj, Andreas ;
Nilsson, Elna J. K. ;
Johnson, Matthew S. ;
Mikkelsen, Kurt V. ;
Christiansen, Ove ;
Soderhjelm, Par ;
Kongsted, Jacob .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (19)
[3]   Quantum Mechanics/Fluctuating Charge Protocol to Compute Solvatochromic Shifts [J].
Ambrosetti, Matteo ;
Skoko, Sulejman ;
Giovannini, Tommaso ;
Cappelli, Chiara .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (11) :7146-7156
[4]   A theoretical investigation of valence and Rydberg electronic states of acrolein [J].
Aquilante, F ;
Barone, V ;
Roos, BO .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (23) :12323-12334
[5]  
Aquilante F., 2011, Linear-Scaling Techniquesin Computational Chemistry and Physics, P301
[6]   A WELL-BEHAVED ELECTROSTATIC POTENTIAL BASED METHOD USING CHARGE RESTRAINTS FOR DERIVING ATOMIC CHARGES - THE RESP MODEL [J].
BAYLY, CI ;
CIEPLAK, P ;
CORNELL, WD ;
KOLLMAN, PA .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (40) :10269-10280
[7]   Pushing the Limits of EOM-CCSD with Projector-Based Embedding for Excitation Energies [J].
Bennie, Simon J. ;
Curchod, Basile F. E. ;
Manby, Frederick R. ;
Glowacki, David R. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (22) :5559-5565
[8]   A complete basis set study of the lowest n-π* and π-π* electronic transitions of acrolein in explicit water environment [J].
Bistafa, Carlos ;
Modesto-Costa, Lucas ;
Canuto, Sylvio .
THEORETICAL CHEMISTRY ACCOUNTS, 2016, 135 (05)
[9]   A quantum mechanical/molecular dynamics/mean field study of acrolein in aqueous solution: Analysis of H bonding and bulk effects on spectroscopic properties [J].
Brancato, Giuseppe ;
Rega, Nadia ;
Barone, Vincenzo .
JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (16)
[10]   DETERMINING ATOM-CENTERED MONOPOLES FROM MOLECULAR ELECTROSTATIC POTENTIALS - THE NEED FOR HIGH SAMPLING DENSITY IN FORMAMIDE CONFORMATIONAL-ANALYSIS [J].
BRENEMAN, CM ;
WIBERG, KB .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1990, 11 (03) :361-373